Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42216
Campo DC Valoridioma
dc.contributor.authorMendonca, Fábioen_US
dc.contributor.authorSheikh Shanawaz, Mostafaen_US
dc.contributor.authorRavelo-Garcia, Antonio G.en_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorPenzel, Thomasen_US
dc.date.accessioned2018-10-23T08:51:56Z-
dc.date.available2018-10-23T08:51:56Z-
dc.date.issued2019en_US
dc.identifier.issn2168-2194en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/42216-
dc.description.abstractSleep disorders are a common health condition that can affect numerous aspects of life. Obstructive sleep apnea is one of the most common disorders and is characterized by a reduction or cessation of airflow during sleep. In many countries this disorder is usually diagnosed in sleep laboratories, by a polysomnography, which is an expensive procedure involving much effort for the patient. Multiple systems have been proposed to address this situation, including performing the examination and analysis in the patient's home, using sensors to detect physiological signals that are automatically analyzed by algorithms. However, the precision of these devices is usually not enough to provide a clinical diagnosis. Therefore, the objective of this review is to analyze already existing algorithms that have not been implemented on hardware but have had their performance verified by at least one experiment which aims to detect obstructive sleep apnea, in order to show future trends. The performance of different algorithms and methods for apnea detection through the use of different sensors (pulse oximetry, electrocardiogram, respiration, sound and combined approaches) has been evaluated. A total of 84 original research articles published from 2003 to 2017, that had the potential to be promising diagnostic tools, were selected to cover multiple solutions. This review could provide valuable information for those researchers who want to carry out a hardware implementation of potential signal processing algorithms.en_US
dc.languageengen_US
dc.relationPortuguese Foundation for Science and Technology through Projeto Estrategico LA ´ 9—UID/EEA/50009/2013en_US
dc.relationAgencia Regional para ˆ o Desenvolvimento da Investigac¸ao, Tecnologia e Inovac ˜ ¸ao under the ˜ project M1420-09-5369-FSE-000001—Ph.D. Studentshipen_US
dc.relation.ispartofIEEE Journal of Biomedical and Health Informaticsen_US
dc.sourceIEEE Journal of Biomedical and Health Informatics [ISSN 2168-2194], v. 23(2), p. 825 - 837en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherObstructive Sleep Apneaen_US
dc.subject.otherAlgorithms Reviewen_US
dc.titleA review of obstructive sleep apnea detection approachesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JBHI.2018.2823265en_US
dc.identifier.scopus85052719186-
dc.identifier.isi000460666400038-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid57200602527-
dc.contributor.authorscopusid7005360676-
dc.description.lastpage837en_US
dc.identifier.issue2-
dc.description.firstpage825en_US
dc.relation.volume23en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid6442981-
dc.contributor.daisngid4069296-
dc.contributor.daisngid1986395-
dc.contributor.daisngid1189663-
dc.contributor.daisngid35791-
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendonca, F-
dc.contributor.wosstandardWOS:Mostafa, SS-
dc.contributor.wosstandardWOS:Ravelo-Garcia, AG-
dc.contributor.wosstandardWOS:Morgado-Dias, F-
dc.contributor.wosstandardWOS:Penzel, T-
dc.date.coverdateMarzo 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,306-
dc.description.jcr5,223-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.