Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42189
Campo DC Valoridioma
dc.contributor.authorHaldeman, C.D., IIIen_US
dc.contributor.authorAragon, D.K.en_US
dc.contributor.authorMiles, T.en_US
dc.contributor.authorGlenn, S.M.en_US
dc.contributor.authorRamos, Antonio G.en_US
dc.date.accessioned2018-10-19T09:28:31Z-
dc.date.available2018-10-19T09:28:31Z-
dc.date.issued2016en_US
dc.identifier.isbn9781509015375en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/42189-
dc.description.abstractWith recent developments in battery technology and ocean energy harvesting systems, biological fouling, or biofouling, a process referring to the gradual accumulation of organisms on underwater surfaces, has gained a foothold as the primary adversary in long-duration autonomous underwater vehicle (AUV) flights of the Challenger glider mission. Limiting biofouling on long-duration AUVs is essential to the success of the flight. Inverse relationships and correlations were drawn between biofouling, vertical velocity of the AUV, and in turn, steering capability. As organisms settle and grow on the AUV, the hydrodynamics of the vessel changed, resulting in larger volume and more drag, adding buoyancy discrepancies as well. The increased drag results in a lower vertical velocity, and therefore less water flow over the rudder, or fin, directly causing the reduction in steering capability. Additionally, the organisms were not evenly distributed about the AUV, causing an imbalance in the drag. The fin then needed to maintain an offset to counteract this imbalance, resulting in less overall range in fin movement, further reducing the ability to steer. Analysis of the data from four separate legs of ocean basin crossings has shown that as the AUV begins to foul, it needs to maintain a vertical velocity of greater than 12 cm/s to maintain viable steering. Overall the fin will move more as it attempts to compensate for biofouling, which will use additional power throughout the duration of the flight, bringing power budgets back into the equation. Although the biofouling issues facing long-duration AUVs are subject to the same settling processes as boats and ships, porting commercially available antifoulant technologies from larger, faster vessels to the AUVs has proven challenging. Non-like metals combined with biofilms can result in increased galvanic corrosion, so copper coating compounds on steel components and aluminum AUV hull are not ideal, particularly with limited space and weight for sacrificial anodes. Ablative paints, by design, can wear away, causing possible ballast issues while failing to prevent fouling. Biocides, for obvious reasons, have not been in the list of candidates for consideration in the ongoing battle against biological growth. We introduced some behavioral modifications in the flight characteristics of the AUV that provided some assistance. For example, we avoided the majority of the warmer and illuminated euphotic zone, where primary production occurred, or zones above a certain temperature range that could hamper organism growth, even if it was not possible to prevent settling. This paper will explore the differences in biofouling, flight environment, preventative measures, and lessons learned on the four legs of ocean basin crossings completed by two separate Slocum electric gliders, part of the Rutgers AUV fleet.en_US
dc.languageengen_US
dc.relation.ispartofOCEANS 2016 MTS/IEEE Monterey, OCE 2016en_US
dc.sourceOCEANS 2016 MTS/IEEE Monterey, OCE 2016 (7761236)en_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherBiofoulingen_US
dc.subject.otherFlight characteristicsen_US
dc.subject.otherGlidersen_US
dc.subject.otherLong duration AUVen_US
dc.titleLessening biofouling on long-duration AUV flights: Behavior modifications and lessons learneden_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2016 OCEANS MTS/IEEE Monterey, OCE 2016en_US
dc.identifier.doi10.1109/OCEANS.2016.7761236en_US
dc.identifier.scopus85006851578-
dc.identifier.isi000399929001083-
dc.contributor.authorscopusid17345404100-
dc.contributor.authorscopusid17345350500-
dc.contributor.authorscopusid36857219400-
dc.contributor.authorscopusid57200941381-
dc.contributor.authorscopusid56505656800-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid6764885-
dc.contributor.daisngid6862665-
dc.contributor.daisngid972372-
dc.contributor.daisngid28322-
dc.contributor.daisngid30350490-
dc.description.numberofpages8en_US
dc.identifier.eisbn978-1-5090-1537-5-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Haldeman, CD-
dc.contributor.wosstandardWOS:Aragon, DK-
dc.contributor.wosstandardWOS:Miles, T-
dc.contributor.wosstandardWOS:Glenn, SM-
dc.contributor.wosstandardWOS:Ramos, AG-
dc.date.coverdateNoviembre 2016en_US
dc.identifier.conferenceidevents121040-
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR ECOAQUA: Biodiversidad y Conservación-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0003-1374-5805-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameGonzález Ramos, Antonio Juan-
crisitem.event.eventsstartdate19-09-2016-
crisitem.event.eventsenddate23-09-2016-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

17
actualizado el 15-sep-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 15-sep-2024

Visitas

104
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.