Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42119
Título: Risk aggregation in multivariate dependent Pareto distributions
Autores/as: Sarabia, José María
Gómez-Déniz, Emilio 
Prieto, Faustino
Jordá, Vanesa
Clasificación UNESCO: 1206 Análisis numérico
1209 Estadística
Palabras clave: Classical Pareto distribution
Collective risk model
Dependent risks
Hypergeometric functions
Individual risk model
Fecha de publicación: 2016
Publicación seriada: Insurance: Mathematics and Economics 
Resumen: In this paper we obtain closed expressions for the probability distribution function of aggregated risks with multivariate dependent Pareto distributions. We work with the dependent multivariate Pareto type II proposed by Arnold (1983, 2015), which is widely used in insurance and risk analysis. We begin with an individual risk model, where the probability density function corresponds to a second kind beta distribution, obtaining the VaR, TVaR and several other tail risk measures. Then, we consider a collective risk model based on dependence, where several general properties are studied. We study in detail some relevant collective models with Poisson, negative binomial and logarithmic distributions as primary distributions. In the collective Pareto–Poisson model, the probability density function is a function of the Kummer confluent hypergeometric function, and the density of the Pareto–negative binomial is a function of the Gauss hypergeometric function. Using data based on one-year vehicle insurance policies taken out in 2004–2005 (Jong and Heller, 2008) we conclude that our collective dependent models outperform other collective models considered in the actuarial literature in terms of AIC and CAIC statistics.
URI: http://hdl.handle.net/10553/42119
ISSN: 0167-6687
DOI: 10.1016/j.insmatheco.2016.07.009
Fuente: Insurance: Mathematics and Economics[ISSN 0167-6687],v. 71, p. 154-163
Colección:Artículos
Vista completa

Citas SCOPUSTM   

22
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 17-nov-2024

Visitas

109
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.