Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42094
Título: Modelling income data using two extensions of the exponential distribution
Autores/as: Calderín-Ojeda, Enrique
Azpitarte, Francisco
Gómez Déniz, Emilio 
Clasificación UNESCO: 530703 Modelos y teorías del desarrollo económico
Palabras clave: Australia
Exponential distribution
Income distribution
Lognormal distribution
Mixture model, et al.
Fecha de publicación: 2016
Publicación seriada: Physica A: Statistical Mechanics and its Applications 
Resumen: In this paper we propose two extensions of the Exponential model to describe income distributions. The Exponential ArcTan (EAT) and the composite EAT–Lognormal models discussed in this paper preserve key properties of the Exponential model including its capacity to model distributions with zero incomes. This is an important feature as the presence of zeros conditions the modelling of income distributions as it rules out the possibility of using many parametric models commonly used in the literature. Many researchers opt for excluding the zeros from the analysis, however, this may not be a sensible approach especially when the number of zeros is large or if one is interested in accurately describing the lower part of the distribution. We apply the EAT and the EAT–Lognormal models to study the distribution of incomes in Australia for the period 2001–2012. We find that these models in general outperform the Gamma and Exponential models while preserving the capacity of the latter to model zeros.
URI: http://hdl.handle.net/10553/42094
ISSN: 0378-4371
DOI: 10.1016/j.physa.2016.06.047
Fuente: Physica A: Statistical Mechanics and its Applications [ISSN 0378-4371], v. 461, p. 756-766
Colección:Artículos
Vista completa

Citas SCOPUSTM   

7
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 15-dic-2024

Visitas

71
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.