Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42026
Title: Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications
Authors: Yánez, A. 
Herrera, A. 
Martel, O. 
Monopoli, D.
Afonso, H.
UNESCO Clasification: 3314 Tecnología médica
321315 Traumatología
Keywords: Compressive behaviour
Electron beam melting
Gyroid lattice structures
Specific strength
Titanium alloys
Issue Date: 2016
Journal: Materials Science and Engineering C 
Abstract: Electron beam melting (EBM) was used to fabricate porous titanium alloy structures. The elastic modulus of these porous structures was similar to the elastic modulus of the cancellous human bone. Two types of cellular lattice structures were manufactured and tested: gyroids and diamonds. The design of the gyroid structures was determined by the main angle of the struts with respect to the axial direction. Thus, structures with angles of between 19 and 68.5° were manufactured. The aim of the design was to reduce the amount of material needed to fabricate a structure with the desired angles to increase the range of stiffness of the scaffolds. Compression tests were conducted to obtain the elastic modulus and the strength. Both parameters increased as the angle decreased. Finally, the specific strength of the gyroid structures was compared with that of the diamond structures and other types of structures. It is shown that, for angles lower than 35°, the gyroid structures had a high strength to weight ratios.
URI: http://hdl.handle.net/10553/42026
ISSN: 0928-4931
DOI: 10.1016/j.msec.2016.06.016
Source: Materials Science and Engineering C[ISSN 0928-4931],v. 68, p. 445-448
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

123
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

110
checked on Nov 17, 2024

Page view(s)

93
checked on Jul 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.