Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42015
Título: Implementation of the principal component analysis onto high-performance computer facilities for hyperspectral dimensionality reduction: results and comparisons
Autores/as: Martel Jordán, Ernestina Ángeles 
Lazcano, Raquel
López Feliciano, José Francisco 
Madroñal, Daniel
Salvador, Rubén
López, Sebastián 
Juarez, Eduardo
Guerra, Raúl 
Sanz, César
Sarmiento, Roberto 
Clasificación UNESCO: 330790 Microelectrónica
Palabras clave: Hyperspectral imaging
Dimensionality reduction
Principal component analysis
Jacobi method
GPU, et al.
Fecha de publicación: 2018
Editor/a: 2072-4292
Publicación seriada: Remote Sensing 
Resumen: Dimensionality reduction represents a critical preprocessing step in order to increase the efficiency and the performance of many hyperspectral imaging algorithms. However, dimensionality reduction algorithms, such as the Principal Component Analysis (PCA), suffer from their computationally demanding nature, becoming advisable for their implementation onto high-performance computer architectures for applications under strict latency constraints. This work presents the implementation of the PCA algorithm onto two different high-performance devices, namely, an NVIDIA Graphics Processing Unit (GPU) and a Kalray manycore, uncovering a highly valuable set of tips and tricks in order to take full advantage of the inherent parallelism of these high-performance computing platforms, and hence, reducing the time that is required to process a given hyperspectral image. Moreover, the achieved results obtained with different hyperspectral images have been compared with the ones that were obtained with a field programmable gate array (FPGA)-based implementation of the PCA algorithm that has been recently published, providing, for the first time in the literature, a comprehensive analysis in order to highlight the pros and cons of each option.
URI: http://hdl.handle.net/10553/42015
ISSN: 2072-4292
DOI: 10.3390/rs10060864
Fuente: Remote Sensing [ISSN 2072-4292], v. 10(6), 864
Colección:Artículos
miniatura
Adobe PDF (3,93 MB)
Vista completa

Citas SCOPUSTM   

33
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

27
actualizado el 24-nov-2024

Visitas

97
actualizado el 15-jun-2024

Descargas

118
actualizado el 15-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.