Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42008
DC FieldValueLanguage
dc.contributor.authorTerova, Gencianaen_US
dc.contributor.authorRimoldi, Simonaen_US
dc.contributor.authorIzquierdo, Marisolen_US
dc.contributor.authorPirrone, Cristinaen_US
dc.contributor.authorGhrab, Wafaen_US
dc.contributor.authorBernardini, Giovannien_US
dc.date.accessioned2018-09-27T11:37:11Z-
dc.date.available2018-09-27T11:37:11Z-
dc.date.issued2018en_US
dc.identifier.issn0920-1742en_US
dc.identifier.urihttp://hdl.handle.net/10553/42008-
dc.description.abstractCurrently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and upregulated mRNA copy number of OC gene. The expression of this gene was strongly correlated with mineralization degree, thus confirming its potency as a good marker of bone mineralization in gilthead seabream larvae.en_US
dc.languageengen_US
dc.publisher0920-1742
dc.relation.ispartofFish Physiology and Biochemistryen_US
dc.sourceFish Physiology and Biochemistry [ISSN 0920-1742], v. 44 (5), p. 1375-1391en_US
dc.subject310502 Pisciculturaen_US
dc.subject.otherAquacultureen_US
dc.subject.otherHistologyen_US
dc.subject.otherLarvaeen_US
dc.subject.otherLight microscopyen_US
dc.subject.otherNanomineralsen_US
dc.subject.otherReal-time PCRen_US
dc.subject.otherSeabreamen_US
dc.subject.otherTransmission electron microscopyen_US
dc.titleNano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress responseen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10695-018-0528-7en_US
dc.identifier.scopus85048603873-
dc.identifier.isi000444021700010-
dc.contributor.authorscopusid6602956364-
dc.contributor.authorscopusid6505757799-
dc.contributor.authorscopusid7103111891-
dc.contributor.authorscopusid55922791400-
dc.contributor.authorscopusid57190071803-
dc.contributor.authorscopusid7006740825-
dc.description.lastpage1391en_US
dc.identifier.issue5-
dc.description.firstpage1375en_US
dc.relation.volume44en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid432652-
dc.contributor.daisngid1207371-
dc.contributor.daisngid31444473-
dc.contributor.daisngid3659702-
dc.contributor.daisngid24798574-
dc.contributor.daisngid1032699-
dc.contributor.wosstandardWOS:Terova, G-
dc.contributor.wosstandardWOS:Rimoldi, S-
dc.contributor.wosstandardWOS:Izquierdo, M-
dc.contributor.wosstandardWOS:Pirrone, C-
dc.contributor.wosstandardWOS:Ghrab, W-
dc.contributor.wosstandardWOS:Bernardini, G-
dc.date.coverdateOctubre 2018en_US
dc.identifier.ulpgces
dc.description.sjr0,555
dc.description.jcr1,729
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Grupo de Investigación en Acuicultura-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0003-4297-210X-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameIzquierdo López, María Soledad-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

17
checked on May 19, 2024

WEB OF SCIENCETM
Citations

16
checked on May 23, 2024

Page view(s)

73
checked on Dec 2, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.