Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42002
Campo DC Valoridioma
dc.contributor.authorAlemán-Domínguez, Maria Elenaen_US
dc.contributor.authorGiusto, Elenaen_US
dc.contributor.authorOrtega, Zaidaen_US
dc.contributor.authorTamaddon, Maryamen_US
dc.contributor.authorBenítez, Antonio Nizardoen_US
dc.contributor.authorLiu, Chaozongen_US
dc.date.accessioned2018-09-26T12:16:30Z-
dc.date.available2018-09-26T12:16:30Z-
dc.date.issued2019en_US
dc.identifier.issn1552-4973en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/42002-
dc.description.abstractMicrocrystalline cellulose (MCC) is proposed in this study as an additive in polycaprolactone (PCL) matrices to obtain 3D printed scaffolds with improved mechanical and biological properties. Improving the mechanical behavior and the biological performance of polycaprolactone-based scaffolds allows to increase the potential of these structures for bone tissue engineering. Different groups of samples were evaluated in order to analyse the effect of the additive in the properties of the PCL matrix. The concentrations of MCC in the groups of samples were 0, 2, 5 and 10% (w/w). These combinations were subjected to a thermogravimetric analysis in order to evaluate the influence of the additive in the thermal properties of the composites. 3D printed scaffolds were manufactured with a commercial 3D printer based on fused deposition modelling. The operation conditions have been established in order to obtain scaffolds with a 0/90° pattern with pore sizes between 450-500 µm and porosity values between 50-60%. The mechanical properties of these structures were measured in the compression and flexural modes. The scaffolds containing 2% and 5% MCC have higher flexural and compression elastic modulus, although those containing 10% do not show this reinforcement effect. On the other hand, the proliferation of sheep bone marrow cells on the proposed scaffolds was evaluated over 8 days. The results show that the proliferation is significantly better (p<0.05) on the group of samples containing 2% MCC. Therefore, these scaffolds (PCL:MCC 98:2) have suitable properties to be further evaluated for bone tissue engineering applications.en_US
dc.languageengen_US
dc.relationBiomaterials And Additive Manufacturing: Osteochondral Scaffold Innovation Applied To Osteoarthritisen_US
dc.relation.ispartofJournal of Biomedical Materials Research - Part B Applied Biomaterialsen_US
dc.sourceJournal of Biomedical Materials Research - Part B Applied Biomaterials[ISSN 1552-4973], v. 107 (3), p. 521-528en_US
dc.subject3313 Tecnología e ingeniería mecánicasen_US
dc.subject.otherTissue Engineeringen_US
dc.subject.otherIngeniería de tejidosen_US
dc.subject.otherRegeneración de huesoen_US
dc.subject.otherBone replacementen_US
dc.title3D printed polycaprolactone-microcrystalline cellulose scaffoldsen_US
dc.title.alternativeThree-dimensional printed polycaprolactone-microcrystalline cellulose scaffoldsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jbm.b.34142en_US
dc.identifier.scopus85046545465-
dc.identifier.isi000461683400006-
dc.contributor.authorscopusid56097219900-
dc.contributor.authorscopusid6506701605-
dc.contributor.authorscopusid57212176037-
dc.contributor.authorscopusid36241994700-
dc.contributor.authorscopusid55581409800-
dc.contributor.authorscopusid57210096811-
dc.contributor.authorscopusid57188879979-
dc.identifier.eissn1552-4981-
dc.description.lastpage528en_US
dc.identifier.issue3-
dc.description.firstpage521en_US
dc.relation.volume107en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid8698575-
dc.contributor.daisngid3882185-
dc.contributor.daisngid2273115-
dc.contributor.daisngid12148725-
dc.contributor.daisngid579452-
dc.contributor.daisngid29692247-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Aleman-Dominguez, ME-
dc.contributor.wosstandardWOS:Giusto, E-
dc.contributor.wosstandardWOS:Ortega, Z-
dc.contributor.wosstandardWOS:Tamaddon, M-
dc.contributor.wosstandardWOS:Benitez, AN-
dc.contributor.wosstandardWOS:Liu, CZ-
dc.date.coverdateAbril 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,659
dc.description.jcr2,831
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0002-2254-9905-
crisitem.author.orcid0000-0002-7112-1067-
crisitem.author.orcid0000-0001-5711-6395-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameAleman Dominguez,Maria Elena-
crisitem.author.fullNameOrtega Medina, Zaida Cristina-
crisitem.author.fullNameBenítez Vega, Antonio Nizardo-
crisitem.project.principalinvestigatorMonzón Verona, Mario Domingo-
Colección:Artículos
miniatura
Adobe PDF (713,15 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.