Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/41984
Title: Etiquetado semántico de vídeos basado en aprendizaje profundo y minería de texto
Other Titles: Semantic video tagging based in deep learning and text mining
Authors: Ortega León, Cristian
Director: Lorenzo Navarro, José Javier 
UNESCO Clasification: 1203 Ciencia de los ordenadores
3304 Tecnología de los ordenadores
Keywords: Clasificación de vídeo
Clasificación de texto
Modelos de clasificación
Aprendizaje profundo
Etiquetado semántico de vídeo
Minería de texto
Issue Date: 2018
Abstract: El vídeo online es responsable del 40% del tráfico de Internet, con una tendencia al alza debido al crecimiento de las redes sociales y las plataformas destinadas a este fin, tales como YouTube, Vimeo, Viddler, etc. Para estas plataformas, debido al gran volumen de vídeos que manejan, se presenta de forma natural la problemática referente a la clasificación de los mismos en tópicos o clases. Este es, precisamente, el objetivo desarrollado en este TFM: una metodología que permite realizar clasificación de vídeo desde un enfoque basado en minería de texto. Aunque los resultados de clasificación obtenidos han sido dispares, la metodología desarrollada es perfectamente válida y funcional, siempre en función del dataset que se este utilizando
Online video is responsible for 40% of Internet traffic, with an upward trend due to the growth of social networks and platforms for this purpose, such as YouTube, Vimeo, Viddler, etc. For these platforms, due to the large volume of videos they have, the problem of classifying them into topics or classes is presented naturally. This is precisely the objective developed in this TFM: a methodology that allows video sorting from a text-mining-based approach. Although the classification results obtained have been uneven, the methodology developed is perfectly valid and functional, always depending on the dataset used. Online video is responsible for 40% of Internet traffic, with an upward trend due to the growth of social networks and platforms for this purpose, such as YouTube, Vimeo, Viddler, etc. For these platforms, due to the large volume of videos they have, the problem of classifying them into topics or classes is presented naturally. This is precisely the objective developed in this TFM: a methodology that allows video sorting from a text-mining-based approach. Although the classification results obtained have been uneven, the methodology developed is perfectly valid and functional, always depending on the dataset used. Online video is responsible for 40% of Internet traffic, with an upward trend due to the growth of social networks and platforms for this purpose, such as YouTube, Vimeo, Viddler, etc. For these platforms, due to the large volume of videos they have, the problem of classifying them into topics or classes is presented naturally. This is precisely the objective developed in this TFM: a methodology that allows video sorting from a text-mining-based approach. Although the classification results obtained have been uneven, the methodology developed is perfectly valid and functional, always depending on the dataset used.
Description: Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (MUSIANI)
Institute: Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
URI: http://hdl.handle.net/10553/41984
Appears in Collections:Trabajo final de máster
Thumbnail
Memoria
Adobe PDF (7,46 MB)
Show full item record

Page view(s)

70
checked on Feb 28, 2021

Download(s)

108
checked on Feb 28, 2021

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.