Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41828
Campo DC Valoridioma
dc.contributor.authorYánez, A.en_US
dc.contributor.authorCuadrado, A.en_US
dc.contributor.authorMartel, O.en_US
dc.contributor.authorAfonso, H.en_US
dc.contributor.authorMonopoli, D.en_US
dc.date.accessioned2018-09-04T10:12:09Z-
dc.date.available2018-09-04T10:12:09Z-
dc.date.issued2018en_US
dc.identifier.issn0264-1275en_US
dc.identifier.urihttp://hdl.handle.net/10553/41828-
dc.description.abstractTriply periodic minimal surfaces (TPMS) have emerged as a suitable tool for designing porous biomaterials. One of the well-known TPMS structures is the gyroid structure. Different types of gyroid porous structures (normal and deformed gyroid structures) with different porosities have been designed and fabricated by Electron Beam Melting technology with the purpose of analysing the mechanical properties under compression and torsion loads. Then, some of them have also been studied by finite element method for different load directions. The compression tests demonstrated that the deformed gyroids presented high stiffness and strength with loads in the longitudinal direction of the structures, especially when the deformed gyroids were reinforced with a shell. The torsion tests showed that the normal gyroids presented better torsional stiffness and strength than the deformed gyroids, with high CAD porosities (90%). However, no significant differences between both structures were found for low CAD porosities (75%). Finite element analysis showed that when the loads adopted a 45 degrees angle with regard to the longitudinal axis of the structure, the normal gyroids presented more homogeneous behaviour than the deformed gyroids. In summary, gyroid porous titanium structures presented good and versatile stiffness and strength to be used for correction of bone defects.en_US
dc.languageengen_US
dc.relation"Mejora de la osteointegración de estructuras porosas de titanio mediante la optimización del diseño y modificación superficial con recubrimiento polimerico".en_US
dc.relation.ispartofMaterials and Designen_US
dc.sourceMaterials and Design[ISSN 0264-1275],v. 140, p. 21-29en_US
dc.subject240604 Biomecánicaen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherBeam Melting Ebmen_US
dc.subject.otherMechanical-Propertiesen_US
dc.subject.otherTrabecular Boneen_US
dc.subject.otherCompressive Behavioren_US
dc.subject.otherLattice Structuresen_US
dc.subject.otherFatigue Behavioren_US
dc.subject.otherTi6Al4V Partsen_US
dc.subject.otherUnit Cellsen_US
dc.subject.otherBiomaterialsen_US
dc.subject.otherTi-6Al-4Ven_US
dc.titleGyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstructionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.matdes.2017.11.050en_US
dc.identifier.scopus85034818056-
dc.identifier.isi000424943900003-
dc.contributor.authorscopusid56423836100-
dc.contributor.authorscopusid7005588567-
dc.contributor.authorscopusid15048342800-
dc.contributor.authorscopusid6506915210-
dc.contributor.authorscopusid56373787900-
dc.description.lastpage29en_US
dc.description.firstpage21en_US
dc.relation.volume140en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid35037967-
dc.contributor.daisngid3815560-
dc.contributor.daisngid12629772-
dc.contributor.daisngid4754957-
dc.contributor.daisngid8479022-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Yanez, A-
dc.contributor.wosstandardWOS:Cuadrado, A-
dc.contributor.wosstandardWOS:Martel, O-
dc.contributor.wosstandardWOS:Afonso, H-
dc.contributor.wosstandardWOS:Monopoli, D-
dc.date.coverdateFebrero 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,951
dc.description.jcr5,77
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Biomaterials and Biomechanics Research Group-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Biomaterials and Biomechanics Research Group-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Biomaterials and Biomechanics Research Group-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-1736-552X-
crisitem.author.orcid0000-0002-8599-781X-
crisitem.author.orcid0000-0003-3806-5523-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameYánez Santana, Manuel Alejandro-
crisitem.author.fullNameCuadrado Hernández, Alberto Javier-
crisitem.author.fullNameMartel Fuentes, Oscar-
crisitem.project.principalinvestigatorYánez Santana, Manuel Alejandro-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

199
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

173
actualizado el 30-mar-2025

Visitas

167
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.