Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/41589
Title: | The Geometric ArcTan distribution with applications to model demand for health services | Authors: | Gómez-Déniz, E. Sarabia, J. M. Calderín-Ojeda, Enrique |
UNESCO Clasification: | 12 Matemáticas 1209 Estadística 32 Ciencias médicas |
Keywords: | Estimation Geometric Distribution Medical Care Negative Binomial Distribution, et al |
Issue Date: | 2018 | Project: | Nuevos Desarrollos en Métodos Cuantitativos Bayesianos. Aplicaciónes en Evaluación Económica de Tratamientos Mediante Meta-Análisis y Medición de Riesgos Con Datos Actuariales ECO2013-48326-C2-2-P |
Journal: | Communications in Statistics Part B: Simulation and Computation | Abstract: | In this paper, a new discrete two–parameter distribution α ∈ ℜ − {0} and 0 < θ < 1, the Geometric ArcTan (GAT) distribution is introduced. The geometric distribution is a limiting case of this model when α tends to zero. Similarly to the the latter distribution, this probabilistic family is unimodal but the mode can be located at zero or in other point of the support. Then, after deriving some of its more relevant properties, the issue of parameter investigation is investigated. Next, the GAT distribution is used to explain the demand for health services by means of a regression model. Numerical results show that this new model outperforms the negative binomial distribution. | URI: | http://hdl.handle.net/10553/41589 | ISSN: | 0361-0918 | DOI: | 10.1080/03610918.2017.1406509 | Source: | Communications in Statistics: Simulation and Computation[ISSN 0361-0918], v. 48(4), p. 1101-1120 | URL: | https://api.elsevier.com/content/abstract/scopus_id/85041098866 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
3
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
3
checked on Mar 30, 2025
Page view(s)
76
checked on Mar 2, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.