Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41529
Campo DC Valoridioma
dc.contributor.authorSantana-González, Carolinaen_US
dc.contributor.authorSantana-Casiano, J. Magdalenaen_US
dc.contributor.authorGonzález-Dávila, Melchoren_US
dc.contributor.authorSantana Del Pino, Ángeloen_US
dc.contributor.authorGladyshev, Sergeyen_US
dc.contributor.authorSokov, Alexeyen_US
dc.date.accessioned2018-07-11T09:46:49Z-
dc.date.available2018-07-11T09:46:49Z-
dc.date.issued2018en_US
dc.identifier.issn0304-4203en_US
dc.identifier.urihttp://hdl.handle.net/10553/41529-
dc.description.abstractThe Fe(II) oxidation rate was studied in different water masses present in the subarctic North Atlantic ocean along the 59.5° N transatlantic section. Temperature, pH, salinity and total organic carbon (TOC) in natural conditions, fixed temperature conditions and both fixed temperature and pH conditions, were considered in order to understand the combined effects of the variables that control the Fe(II) oxidation kinetics in the ocean. The study shows that in natural conditions, temperature was the master variable which controlled 75% of the pseudo-first order kinetics rate (k′). This value rose to 90% when pHF(free scale) and salinity were also considered. At a fixed temperature, 72% of k′ was controlled by pH and at both fixed temperature and pH, salinity controled 62% of the Fe(II) oxidation rate. Sources and characteristics of TOC are important factors influencing the oxidation of Fe(II). The organic matter had both positive and negative effects on Fe(II) oxidation. In surface and coastal waters, TOC accelerated k′, decreasing the Fe(II) half-life time (t1/2). In Subpolar Mode Water, Labrador Sea Water (for the Irminger Basin) and Denmark Straight Overflow Water, TOC slowed down k′, increasing Fe(II) t1/2. This shifting behaviour where TOC affects Fe(II) oxidation depending on its marine or terrestrial origin, depth and remineralization stage proves that TOC cannot be used as a variable in an equation describing k′. The temperature dependence study indicated that the energy requirement for Fe(II) oxidation in surface waters was 32% lower than the required for bottom waters at both pH 7.7 and 8.0. This variability confirmed the importance of the organic matter composition of the selected samples. The Fe(II) oxidation rate constants in the region can be obtained from an empirical equation considering the natural conditions of temperature, pHFand salinity for the area, producing an error of estimation of 0.0072 min−1. This equation should be incorporated in global Fe models.en_US
dc.languageengen_US
dc.relation.ispartofMarine Chemistryen_US
dc.sourceMarine Chemistry[ISSN 0304-4203],v. 203, p. 64-77en_US
dc.subject251001 Oceanografía biológicaen_US
dc.subject120903 Análisis de datosen_US
dc.subject.otherFe(II)en_US
dc.subject.otherOxidationen_US
dc.subject.otherAtlantic subarcticen_US
dc.titleFe(II) oxidation kinetics in the North Atlantic along the 59.5° N during 2016en_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.marchem.2018.05.002
dc.identifier.scopus85047188174
dc.identifier.isi000438320900008-
dc.contributor.authorscopusid57193317400
dc.contributor.authorscopusid6701344294
dc.contributor.authorscopusid6603931257
dc.contributor.authorscopusid56554207500
dc.contributor.authorscopusid7003444062
dc.contributor.authorscopusid6701757896
dc.description.lastpage77-
dc.description.firstpage64-
dc.relation.volume203-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid13063007
dc.contributor.daisngid579253
dc.contributor.daisngid518149
dc.contributor.daisngid33029415
dc.contributor.daisngid1015500
dc.contributor.daisngid3541534
dc.identifier.externalWOS:000438320900008-
dc.contributor.wosstandardWOS:Santana-Gonzalez, C
dc.contributor.wosstandardWOS:Santana-Casiano, JM
dc.contributor.wosstandardWOS:Gonzalez-Davila, M
dc.contributor.wosstandardWOS:Santana-del Pino, A
dc.contributor.wosstandardWOS:Gladyshev, S
dc.contributor.wosstandardWOS:Sokov, A
dc.date.coverdateJunio 2018
dc.identifier.ulpgces
dc.description.sjr1,522
dc.description.jcr2,713
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR Estadística-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-8476-3202-
crisitem.author.orcid0000-0002-7930-7683-
crisitem.author.orcid0000-0003-3230-8985-
crisitem.author.orcid0000-0002-6513-4814-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSantana Gonzalez,Carolina-
crisitem.author.fullNameSantana Casiano, Juana Magdalena-
crisitem.author.fullNameGonzález Dávila, Melchor-
crisitem.author.fullNameSantana Del Pino, Ángelo-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

6
actualizado el 21-abr-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 02-may-2021

Visitas

81
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.