Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41362
Campo DC Valoridioma
dc.contributor.authorGonzalez, Aridane G.en_US
dc.contributor.authorPokrovsky, Oleg S.en_US
dc.contributor.authorIvanova, Irinaen_US
dc.contributor.authorOleinikova, Olgaen_US
dc.contributor.authorFeurtet-Mazel, Agnesen_US
dc.contributor.authorMornet, Stephaneen_US
dc.contributor.authorBaudrimont, Magalieen_US
dc.date.accessioned2018-06-26T08:30:22Z-
dc.date.available2018-06-26T08:30:22Z-
dc.date.issued2018en_US
dc.identifier.issn2075-163Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/41362-
dc.description.abstractThe rising concern about the potential toxicity of synthetic gold nanoparticles (AuNPs) in aquatic environments requires a rigorous estimation of physico-chemical parameters of reactions between AuNPs and major freshwater microorganisms. This study addresses the interaction of 10-nm size, positively charged AuNPs with periphytic freshwater diatoms (Eolimna minima). The adsorption experiments on viable cells were performed in 10 mM NaCl and 5 mM NaCl + 5mMNaHCO(3) solution at a variable pH (3-10), at an AuNPs concentration from 1 mu g/L to 10,000 mu g/L, and an exposure time from a few minutes to 55 days. Three types of experiments, adsorption as a function of time (kinetics), pH-dependent adsorption edge, and constant-pH "Langmuirian" type isotherms, were conducted. In addition, long-term interactions (days to weeks) of live diatoms (under light and in the darkness) were performed. The adsorption was maximal at a pH from 3 to 6 and sizably decreased at a pH of 6 to 10. Results of adsorption experiments were modeled using a second order kinetic model, a Linear Programming Model, Freundlich isotherm, and a ligand binding equation for one site competition. The adsorption of AuNPs(+) most likely occurred on negatively-charged surface sites of diatom cell walls such as carboxylates or phosphorylates, similar to previously studied metal cations. Under light exposure, the AuNPs were stabilized in aqueous solution in the presence of live cells, probably due to the production of exometabolites by diatoms. The adsorbed amount of AuNPs decreased after several days of reaction, suggesting some AuNPs desorption. In the darkness, the adsorption and assimilation were stronger than under light. Overall, the behavior of positively charged AuNPs at the diatom-aqueous solution interface is similar to that of metal cations, but the affinity of aqueous AuNPs to cell exometabolites is higher, which leads to the stabilization of nanoparticles in solution in the presence of diatoms and their exudates. During photosynthetic activity and the pH rising above 9 in the vicinity of diatom cells, the adsorption of AuNPs strongly decreases, which indicates a decreasing potential toxicity of AuNPs for photosynthesizing cells. The present study demonstrates the efficiency of a thermodynamic and kinetic approach for understanding gold nanoparticles interaction with aquatic freshwater peryphytic microorganisms.en_US
dc.languageengen_US
dc.relation.ispartofMineralsen_US
dc.sourceMinerals [ISSN 2075-163X], v. 8 (3), p. 99en_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherAuNPsen_US
dc.subject.otherFreshwater diatomsen_US
dc.subject.otherBiofilmen_US
dc.subject.otherAdsorptionen_US
dc.subject.otherRiveren_US
dc.subject.otherPollutionen_US
dc.subject.otherDiatomeasen_US
dc.titleInteraction of freshwater diatom with gold nanoparticles: adsorption, assimilation, and stabilization by cell exometabolitesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.3390/min8030099
dc.identifier.scopus85043338708
dc.identifier.isi000428561700022-
dc.contributor.authorscopusid37031064100
dc.contributor.authorscopusid35280747200
dc.contributor.authorscopusid57212873540
dc.contributor.authorscopusid57193713500
dc.contributor.authorscopusid6602772791
dc.contributor.authorscopusid6603429652
dc.contributor.authorscopusid7005295727
dc.identifier.issue3-
dc.relation.volume8-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid1874718
dc.contributor.daisngid91335
dc.contributor.daisngid1135287
dc.contributor.daisngid6477878
dc.contributor.daisngid1380062
dc.contributor.daisngid292236
dc.contributor.daisngid211413
dc.contributor.wosstandardWOS:Gonzalez, AG
dc.contributor.wosstandardWOS:Pokrovsky, OS
dc.contributor.wosstandardWOS:Ivanova, IS
dc.contributor.wosstandardWOS:Oleinikova, O
dc.contributor.wosstandardWOS:Feurtet-Mazel, A
dc.contributor.wosstandardWOS:Mornet, S
dc.contributor.wosstandardWOS:Baudrimont, M
dc.date.coverdateMarzo 2018
dc.identifier.ulpgces
dc.description.sjr0,427
dc.description.jcr2,25
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-5637-8841-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameGonzález González, Aridane-
Colección:Artículos
miniatura
pdf
Adobe PDF (5,82 MB)
Vista resumida

Citas SCOPUSTM   

4
actualizado el 21-abr-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 25-feb-2024

Visitas

79
actualizado el 30-sep-2023

Descargas

97
actualizado el 30-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.