Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40337
Campo DC Valoridioma
dc.contributor.authorLazcano, R.en_US
dc.contributor.authorMadroñal, D.en_US
dc.contributor.authorFabelo, H.en_US
dc.contributor.authorOrtega, Sarmientoen_US
dc.contributor.authorSalvador, R.en_US
dc.contributor.authorCallicó, G. M.en_US
dc.contributor.authorJuárez, E.en_US
dc.contributor.authorSanz, C.en_US
dc.date.accessioned2018-06-14T08:39:31Z-
dc.date.available2018-06-14T08:39:31Z-
dc.date.issued2017en_US
dc.identifier.isbn9781510613249-
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/40337-
dc.description.abstractHyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVC-CAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 10430 (104300A)en_US
dc.subject220921 Espectroscopiaen_US
dc.subject.otherHyperspectral Imagingen_US
dc.subject.otherParallelism exploitationen_US
dc.subject.otherReal-time processingen_US
dc.subject.otherRVC-CALen_US
dc.subject.otherSpatial-spectral classificationen_US
dc.titleParallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CALen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjecten_US
dc.relation.conferenceConference on High-Performance Computing in Geoscience and Remote Sensing VII
dc.relation.conferenceHigh-Performance Computing in Geoscience and Remote Sensing VII 2017
dc.identifier.doi10.1117/12.2279613
dc.identifier.scopus85037811088
dc.identifier.isi000417338700008-
dc.contributor.authorscopusid57192839213
dc.contributor.authorscopusid57192829417
dc.contributor.authorscopusid56405568500
dc.contributor.authorscopusid57189334144
dc.contributor.authorscopusid23005852100
dc.contributor.authorscopusid56006321500
dc.contributor.authorscopusid36447485600
dc.contributor.authorscopusid7006751614
dc.identifier.eissn1996-756X-
dc.relation.volume10430-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid3634522
dc.contributor.daisngid3360488
dc.contributor.daisngid2096372
dc.contributor.daisngid1812298
dc.contributor.daisngid1888017
dc.contributor.daisngid506422
dc.contributor.daisngid693458
dc.contributor.daisngid384271
dc.contributor.wosstandardWOS:Lazcano, R
dc.contributor.wosstandardWOS:Madronal, D
dc.contributor.wosstandardWOS:Fabelo, H
dc.contributor.wosstandardWOS:Ortega, S
dc.contributor.wosstandardWOS:Salvador, R
dc.contributor.wosstandardWOS:Callico, GM
dc.contributor.wosstandardWOS:Juarez, E
dc.contributor.wosstandardWOS:Sanz, C
dc.date.coverdateEnero 2017
dc.identifier.conferenceidevents121072
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.event.eventsstartdate12-09-2017-
crisitem.event.eventsstartdate12-09-2017-
crisitem.event.eventsenddate13-09-2017-
crisitem.event.eventsenddate13-09-2017-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Visitas

69
actualizado el 02-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.