Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40329
Campo DC Valoridioma
dc.contributor.authorLillo-Saavedra, Marioen_US
dc.contributor.authorGarcia-Pedrero, Ángelen_US
dc.contributor.authorRodriguez-Esparragón, Dionisioen_US
dc.contributor.authorGonzalo-Martin, Consueloen_US
dc.date.accessioned2018-06-13T11:38:12Z-
dc.date.available2018-06-13T11:38:12Z-
dc.date.issued2017en_US
dc.identifier.isbn9781510613065
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/40329-
dc.description.abstractThermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform. Often, TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to shortwave band pixel resolutions. One of the most classic thermal sharpening technique is TsHARP. It uses a relationship between land surface temperature and normalized vegetation index (NDVI). However, there are several studies that prove that a single relationship between TIR and NDVI may only exist for a limited class of landscape. Our work hypothesis stated that it is possible to improve the spatial resolution of TIR imagery considering a relationship between vegetation and several soil spectral indexes and TIR as well the spatial context information. In this work, the potential of Superpixels (SP) combined with Regression Random Forest (RRF) is used to augmenting the spatial resolution of the Landsat 8 TIR (Band 10 and 11) imagery to their visible (VIS) spatial resolution. The SP allows to consider the contextual information over the land cover, and RF allows to integrate in a unique model the relationship between five spectral indices and TIR data. The results obtained by SP RRF approach shows the potential of this methodology, compared with classical TsHARP method.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 10421 (104210H)en_US
dc.subject3325 Tecnología de las telecomunicacionesen_US
dc.subject.otherLand-surface temperatureen_US
dc.subject.otherEnergy-balanceen_US
dc.subject.otherModelen_US
dc.subject.otherDisaggregationen_US
dc.subject.otherAlgorithmen_US
dc.titleA random forest and superpixels approach to sharpen thermal infrared satellite imageryen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjectes
dc.relation.conferenceConference on Remote Sensing for Agriculture, Ecosystems, and Hydrology
dc.identifier.doi10.1117/12.2277940
dc.identifier.scopus85034787150-
dc.identifier.isi000417373000013-
dc.contributor.authorscopusid8349763700
dc.contributor.authorscopusid36056581100
dc.contributor.authorscopusid56422496000
dc.contributor.authorscopusid36561411500
dc.identifier.eissn1996-756X-
dc.relation.volume10421-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid1401633
dc.contributor.daisngid2163773
dc.contributor.daisngid3305398
dc.contributor.daisngid1398100
dc.contributor.wosstandardWOS:Lillo-Saavedra, M
dc.contributor.wosstandardWOS:Garcia-Pedrero, A
dc.contributor.wosstandardWOS:Rodriguez-Esparragon, D
dc.contributor.wosstandardWOS:Gonzalo-Martin, C
dc.date.coverdate2017
dc.identifier.conferenceidevents121073
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate12-09-2017-
crisitem.event.eventsenddate15-09-2017-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4542-2501-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameRodríguez Esparragón, Dionisio-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.