Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/40295
Título: Evaluation of dimensionality reduction techniques in hyperspectral imagery and their application for the classification of terrestrial ecosystems
Autores/as: Ibarrola-Ulzurrun, E. 
Marcello, Javier 
Gonzalo-Martin, Consuelo
Clasificación UNESCO: 250616 Teledetección (Geología)
220921 Espectroscopia
Palabras clave: Algorithms
Fecha de publicación: 2017
Publicación seriada: Proceedings of SPIE - The International Society for Optical Engineering 
Conferencia: Conference on Image and Signal Processing for Remote Sensing XXIII 
Image and Signal Processing for Remote Sensing XXIII 2017 
Resumen: The hyperspectral imagery is formed by a several narrow and continuous bands covering different regions of the electromagnetic spectrum, such as spectral bands of the visible, near infrared and far infrared. Hyperspectral imagery provides extremely higher spectral resolution than high spatial resolution multispectral imagery, improving the detection capability of terrestrial objects. The greatest difficulty found in the hyperspectral processing is the high dimensionality of these data, which brings out the 'Hughes' phenomenon. This phenomenon specifies that the size of training set required for a given classification increases exponentially with the number of spectral bands. Therefore, the dimensionality of the hyperspectral data is an important drawback when applying traditional classification or pattern recognition approaches to this hyperspectral imagery. In our context, the dimensionality reduction is necessary to obtain accurate thematic maps of natural protected areas. Dimensionality reduction can be divided into the feature-selection algorithms and featureextraction algorithms. We focus the study in the feature-extraction algorithms like Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and Independent Component Analysis (ICA). After a review of the state-of-Art, it has been observed a lack of a comparative study on the techniques used in the hyperspectral imagery dimensionality reduction. In this context, our objective was to perform a comparative study of the traditional techniques of dimensionality reduction (PCA, MNF and ICA) to evaluate their performance in the classification of high spatial resolution imagery of the CASI (Compact Airborne Spectrographic Imager) sensor.
URI: http://hdl.handle.net/10553/40295
ISBN: 9781510613188
ISSN: 0277-786X
DOI: 10.1117/12.2278501
Fuente: Proceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 10427, article number 2278501
Colección:Actas de congresos
Vista completa

Visitas

64
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.