Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/40292
DC FieldValueLanguage
dc.contributor.authorPei, Eujinen_US
dc.contributor.authorLoh, G. H.en_US
dc.contributor.authorHarrison, D.en_US
dc.contributor.authorDe Amorim Almeida, H.en_US
dc.contributor.authorMonzón Verona, Mario Domingoen_US
dc.contributor.authorPaz, Rubénen_US
dc.date.accessioned2018-06-11T08:49:50Z-
dc.date.available2018-06-11T08:49:50Z-
dc.date.issued2017en_US
dc.identifier.issn0144-5154en_US
dc.identifier.urihttp://hdl.handle.net/10553/40292-
dc.description.abstractPurpose: The purpose of this paper is to extend existing knowledge of 4D printing, in line with Khoo et al. (2015) who defined the production of 4D printing using a single material, and 4D printing of multiple materials. It is proposed that 4D printing can be achieved through the use of functionally graded materials (FGMs) that involve gradational mixing of materials and are produced using an additive manufacturing (AM) technique to achieve a single component. Design/methodology/approach: The latest state-of-the-art literature was extensively reviewed, covering aspects of materials, processes, computer-aided design (CAD), applications and made recommendations for future work. Findings: This paper clarifies that functionally graded additive manufacturing (FGAM) is defined as a single AM process that includes the gradational mixing of materials to fabricate freeform geometries with variable properties within one component. The paper also covers aspects of materials, processes, CAD, applications and makes recommendations for future work. Research limitations/implications: This paper examines the relationship between FGAM and 4D printing and defines FGAM as a single AM process involving gradational mixing of materials to fabricate freeform geometries with variable properties within one component. FGAM requires better computational tools for modelling, simulation and fabrication because current CAD systems are incapable of supporting the FGAM workflow. Practical implications: It is also identified that other factors, such as strength, type of materials, etc., must be taken into account when selecting an appropriate process for FGAM. More research needs to be conducted on improving the performance of FGAM processes through extensive characterisation of FGMs to generate a comprehensive database and to develop a predictive model for proper process control. It is expected that future work will focus on both material characterisation as well as seamless FGAM control processes. Originality/value: This paper examines the relationship between FGAM and 4D printing and defines FGAM as a single AM process that includes gradational mixing of materials to fabricate freeform geometries with variable properties within one component.en_US
dc.languageengen_US
dc.relation.ispartofAssembly Automationen_US
dc.sourceAssembly Automation[ISSN 0144-5154],v. 37, p. 147-153en_US
dc.subject331324 Maquinaria de impresión y reproducciónen_US
dc.subject.other3Den_US
dc.subject.otherCompositesen_US
dc.subject.otherRapid manufacturingen_US
dc.subject.otherRapid prototypingen_US
dc.subject.otherSmart materialsen_US
dc.titleA study of 4D printing and functionally graded additive manufacturingen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1108/AA-01-2017-012
dc.identifier.scopus85018168160
dc.identifier.isi000402872300002-
dc.contributor.authorscopusid37052624500
dc.contributor.authorscopusid57193991153
dc.contributor.authorscopusid36544733500
dc.contributor.authorscopusid55938867800
dc.contributor.authorscopusid57193993135
dc.contributor.authorscopusid8590822200
dc.description.lastpage153-
dc.identifier.issue2-
dc.description.firstpage147-
dc.relation.volume37-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2382946
dc.contributor.daisngid16863691
dc.contributor.daisngid121612
dc.contributor.daisngid660094
dc.contributor.daisngid1363424
dc.contributor.daisngid2158374
dc.contributor.wosstandardWOS:Pei, EJ
dc.contributor.wosstandardWOS:Loh, GH
dc.contributor.wosstandardWOS:Harrison, D
dc.contributor.wosstandardWOS:Almeida, HD
dc.contributor.wosstandardWOS:Verona, MDM
dc.contributor.wosstandardWOS:Paz, R
dc.date.coverdateEnero 2017
dc.identifier.ulpgces
dc.description.sjr0,603
dc.description.jcr1,383
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.orcid0000-0003-1223-7067-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
crisitem.author.fullNamePaz Hernández, Rubén-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.