Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/40192
Título: | Robust detection of circles in the vessel contours and application to local probability density estimation | Autores/as: | Alvarez, Luis González Sánchez, Esther Esclarín, Julio Gomez, Luis Alemán-Flores, Miguel Trujillo, Agustín Cuenca Hernández, Carmelo Mazorra, Luis Tahoces, P.G. Carreira-Villamor, José Martín |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 120326 Simulación |
Palabras clave: | Circle Hough transform CT images Histogram analysis Seed point Vessels |
Fecha de publicación: | 2017 | Editor/a: | Springer | Proyectos: | Nuevos Modelos Matemáticos Para la Segmentación y Clasificación en Imágenes | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 6th Joint International Workshops on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting (CVII-STENT0 / 2nd International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS) | Resumen: | In this work we propose a technique to automatically estimate circular cross-sections of the vessels in CT scans. First, a circular contour is extracted for each slice of the CT by using the Hough transform. Afterward, the locations of the circles are optimized by means of a parametric snake model, and those circles which best fit the contours of the vessels are selected by applying a robust quality criterion. Finally, this collection of circles is used to estimate the local probability density functions of the image intensity inside and outside the vessels. We present a large variety of experiments on CT scans which show the reliability of the proposed method. | URI: | http://hdl.handle.net/10553/40192 | ISBN: | 978-3-319-67533-6 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-67534-3_1 | Fuente: | Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS 2017, STENT 2017, CVII 2017. Lecture Notes in Computer Science, v. 10552 LNCS, p. 3-11 |
Colección: | Capítulo de libro |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.