Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/37179
Título: Adaptive segmentation of multimodal polysomnography data for sleep stages detection
Autores/as: Procházka, A.
Kuchyňka, J.
Yadollahi, M.
Suárez Araujo, Carmen Paz 
Vyšata, O.
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Depth sensors
Classification
Kinect
Image
Fecha de publicación: 2017
Publicación seriada: International Conference on Digital Signal Processing proceedings 
Conferencia: 2017 22nd International Conference on Digital Signal Processing, DSP 2017 
Resumen: The paper presents a new algorithm for adaptive classification of sleep stages using multimodal data recorded in the sleep laboratory during overnight polysomnography records. The proposed method includes the learning process applied for the set of individuals with their sleep stages classified by an experienced neurologist. Features evaluated for time windows 30 s long and selected multimodal signals are used for construction and optimization of the proposed two-layer neural network model. Resulting computational system based upon breathing EEG and EOG features is used for analysis of new individuals to detect their sleep stages. Results include classification accuracy higher than 80% and 90% for Wake and REM stages, respectively. The proposed method can adaptively modify model coefficients to detect sleep stages and sleeping disorders using man-machine interaction.
URI: http://hdl.handle.net/10553/37179
ISSN: 2165-3577
DOI: 10.1109/ICDSP.2017.8096108
Fuente: 2017 22Nd International Conference On Digital Signal Processing (Dsp) [ISSN 1546-1874], (2017)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.