Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/36056
Title: Bayesian solutions for handling uncertainty in survival extrapolation
Authors: Negrin, Miguel A. 
Nam, Julian
Briggs, Andrew H.
UNESCO Clasification: 530202 Modelos econométricos
Keywords: Provider decision making
Acceptability curves
Cost-effectiveness analysis
Econometric methods
Decision analysis, et al
Issue Date: 2017
Journal: Medical Decision Making 
Abstract: Objective. Survival extrapolation using a single, best-fit model ignores 2 sources of model uncertainty: uncertainty in the true underlying distribution and uncertainty about the stability of the model parameters over time. Bayesian model averaging (BMA) has been used to account for the former, but it can also account for the latter. We investigated BMA using a published comparison of the Charnley and Spectron hip prostheses using the original 8-year follow-up registry data. Methods. A wide variety of alternative distributions were fitted. Two additional distributions were used to address uncertainty about parameter stability: optimistic and skeptical. The optimistic (skeptical) model represented the model distribution with the highest (lowest) estimated probabilities of survival but reestimated using, as prior information, the most optimistic (skeptical) parameter estimated for intermediate follow-up periods. Distributions were then averaged assuming the same posterior probabilities for the optimistic, skeptical, and noninformative models. Cost-effectiveness was compared using both the original 8-year and extended 16-year follow-up data. Results. We found that all models obtained similar revision-free years during the observed period. In contrast, there was variability over the decision time horizon. Over the observed period, we detected considerable uncertainty in the shape parameter for Spectron. After BMA, Spectron was cost-effective at a threshold of 20,000 pound with 93% probability, whereas the best-fit model was 100%; by contrast, with a 16-year follow-up, it was 0%. Conclusions. This case study casts doubt on the ability of the single best-fit model selected by information criteria statistics to adequately capture model uncertainty. Under this scenario, BMA weighted by posterior probabilities better addressed model uncertainty. However, there is still value in regularly updating health economic models, even where decision uncertainty is low.
URI: http://hdl.handle.net/10553/36056
ISSN: 0272-989X
DOI: 10.1177/0272989X16650669
Source: Medical Decision Making[ISSN 0272-989X],v. 37 (4), p. 367-376
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.