Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/36032
Campo DC Valoridioma
dc.contributor.authorBaptista, Daríoen_US
dc.contributor.authorAbreu, Sandyen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.date.accessioned2018-05-10T09:45:25Z-
dc.date.available2018-05-10T09:45:25Z-
dc.date.issued2017en_US
dc.identifier.issn0141-9331en_US
dc.identifier.urihttp://hdl.handle.net/10553/36032-
dc.description.abstractAn artificial neural network trained using only the data of solar radiation presents a good solution to predict, in real time, the power produced by a photovoltaic system. Even though the neural network can run on a Personal Computer, it is expensive to have a control room with a Personal Computer for small photovoltaic installations. A FPGA running the neural network hardware will be faster and less expensive. In this work, to assist the hardware implementation of an artificial neural network with a FPGA, a specific tool was used: an Automatic General Purpose Neural Hardware Generator. This tool allows for an automatic configuration system that enables the user to configure the artificial neural network, releasing the user from the details of the physical implementation. The results show that it is possible to accurately model the photovoltaic installation based on data from a nearby meteorological installation and the hardware implementation produces low cost and precise results.en_US
dc.languageengen_US
dc.relation.ispartofMicroprocessors and Microsystemsen_US
dc.sourceMicroprocessors and Microsystems [ISSN 0141-9331], v. 49, p. 77-86en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHardware implementation-
dc.subject.otherPhotovoltaic system-
dc.subject.otherArtificial neural network-
dc.titleHardware implementation of an artificial neural network model to predict the energy production of a photovoltaic systemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.micpro.2016.11.003
dc.identifier.scopus85006410059-
dc.identifier.isi000395598300008-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.authorscopusid42360968300
dc.contributor.authorscopusid55644224400
dc.contributor.authorscopusid6602376272
dc.contributor.authorscopusid7102398975
dc.identifier.eissn1872-9436-
dc.description.lastpage86-
dc.description.firstpage77-
dc.relation.volume49-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículoen_US
dc.contributor.daisngid29001292
dc.contributor.daisngid25636333
dc.contributor.daisngid265761
dc.contributor.daisngid1189663
dc.utils.revision-
dc.contributor.wosstandardWOS:Baptista, D
dc.contributor.wosstandardWOS:Abreu, S
dc.contributor.wosstandardWOS:Travieso-Gonzalez, C
dc.contributor.wosstandardWOS:Morgado-Dias, F
dc.date.coverdateMarzo 2017
dc.identifier.ulpgces
dc.description.sjr0,24
dc.description.jcr1,049
dc.description.sjrqQ3
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.