Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/36029
Campo DC Valoridioma
dc.contributor.authorDíaz, Santiagoen_US
dc.contributor.authorCarta González, José Antonioen_US
dc.contributor.authorMatías, Joséen_US
dc.date.accessioned2018-05-10T08:48:54Z-
dc.date.available2018-05-10T08:48:54Z-
dc.date.issued2017en_US
dc.identifier.issn0196-8904en_US
dc.identifier.urihttp://hdl.handle.net/10553/36029-
dc.description.abstractThe long-term annual mean wind power density (WPD) is an important indicator of wind as a power source which is usually included in regional wind resource maps as useful prior information to identify potentially attractive sites for the installation of wind projects. In this paper, a comparison is made of eight proposed Measure-Correlate-Predict (MCP) models to estimate the WPDs at a target site. Seven of these models use the Support Vector Regression (SVR) and the eighth the Multiple Linear Regression (MLR) technique, which serves as a basis to compare the performance of the other models. In addition, a wrapper technique with 10-fold cross-validation has been used to select the optimal set of input features for the SVR and MLR models. Some of the eight models were trained to directly estimate the mean hourly WPDs at a target site. Others, however, were firstly trained to estimate the parameters on which the WPD depends (i.e. wind speed and air density) and then, using these parameters, the target site mean hourly WPDs. The explanatory features considered are different combinations of the mean hourly wind speeds, wind directions and air densities recorded in 2014 at ten weather stations in the Canary Archipelago (Spain). The conclusions that can be drawn from the study undertaken include the argument that the most accurate method for the long-term estimation of WPDs requires the execution of a specially trained model which considers the variability of the wind speeds of the reference stations, as well as of the wind directions and air densities, and in addition the functional manner in which these variables participate in the proposed MCP models. It is also concluded that it is important to consider the annual variation of air density even in regions at sea level. It is further concluded that, of the eight MCP models under comparison, the one that predicts the WPDs based on two sub-models (which estimate the wind speeds and air densities in an unlinked manner) always provides the best MAE (Mean Absolute Error), MARE (Mean Absolute Relative Error) and le (Coefficient of determination) metrics, with the differences being statistically significant (5\% significance) for most of the cases assessed. Additionally, the regulatory capacity of the SVR technique was sufficient to manage most of the overfitting problems, and hence the contribution of the wrapper method was not relevant in our study.en_US
dc.languageengen_US
dc.publisher0196-8904-
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.sourceEnergy Conversion and Management [ISSN 0196-8904], v. 140, p. 334-354en_US
dc.subject3313 Tecnología e ingeniería mecánicasen_US
dc.subject3322 Tecnología energéticaen_US
dc.subject.otherWind power densityen_US
dc.subject.otherMeasure-correlate-predicten_US
dc.subject.otherSupport vectorregressionen_US
dc.subject.otherFeature selectionen_US
dc.subject.otherStatistical significanceen_US
dc.titleComparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. A case studyen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.enconman.2017.02.064en_US
dc.identifier.scopus85015430284-
dc.identifier.isi000400199900030-
dc.contributor.authorscopusid57193643935-
dc.contributor.authorscopusid7003652043-
dc.contributor.authorscopusid57211016243-
dc.identifier.eissn1879-2227-
dc.description.lastpage354en_US
dc.description.firstpage334en_US
dc.relation.volume140en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid261399-
dc.contributor.daisngid1198474-
dc.contributor.daisngid30320309-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Diaz, S-
dc.contributor.wosstandardWOS:Carta, JA-
dc.contributor.wosstandardWOS:Matias, JM-
dc.date.coverdateEnero 2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr2,537
dc.description.jcr6,377
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

33
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

29
actualizado el 24-nov-2024

Visitas

78
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.