Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/35707
Title: | Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant | Authors: | Cabrera, Pedro Carta, José A. González, Jaime Melian, Gustavo |
UNESCO Clasification: | 3308 Ingeniería y tecnología del medio ambiente 250811 Calidad de las aguas |
Keywords: | Desalination Artificial neural network Fluctuating power input Reverse osmosis |
Issue Date: | 2017 | Journal: | Desalination (Amsterdam) | Abstract: | For the purpose of managing the operation of a small-scale prototype of a sea water reverse osmosis desalination plant installed on the island of Gran Canaria (Spain) and enabling it to function with fluctuating power input, artificial neural network (ANN) models were incorporated into its control system. The ANN models were developed to generate feed flow and operating pressure setpoints (with the restriction of having to maintain the permeate recovery rate within a certain range) after taking into account not only the available electrical power but also the temperature and conductivity of the feedwater. It is concluded that the ANN models that were used after training and validation were able to successfully manage the random and widely varying available electrical power. The statistical hypothesis testing that was also performed showed no significant statistical differences (at 5% level) between the errors (both MAE and MAPE) conunitted when adapting power consumption of the plant to the available electrical power in the various operational tests using different feedwater characteristics. | URI: | http://hdl.handle.net/10553/35707 | ISSN: | 0011-9164 | DOI: | 10.1016/j.desal.2017.04.032 | Source: | Desalination [ISSN 0011-9164], v. 416, p. 140-156, (Agosto 2017) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
62
checked on Dec 1, 2024
WEB OF SCIENCETM
Citations
55
checked on Nov 24, 2024
Page view(s)
69
checked on Dec 30, 2023
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.