Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/35419
Campo DC Valoridioma
dc.contributor.authorFernández, Luisen_US
dc.contributor.authorOrtega, Juanen_US
dc.contributor.authorWisniak, Jaimeen_US
dc.contributor.otherFernandez, Luis-
dc.contributor.otherOrtega, Juan-
dc.date.accessioned2018-04-17T11:05:03Z-
dc.date.available2018-04-17T11:05:03Z-
dc.date.issued2017en_US
dc.identifier.issn0001-1541en_US
dc.identifier.urihttp://hdl.handle.net/10553/35419-
dc.description.abstractThis work forms part of a broader study that describes a methodology to validate experimental data of phase equilibria for multicomponent systems from a thermodynamic-mathematical perspective. The goal of this article is to present and justify this method and to study its application to vapor–liquid equilibria (VLE) and vapor–liquid–liquid equilibria (VLLE), obtained under isobaric/isothermal conditions. A procedure based on the Gibbs-Duhem equation is established which presents two independent calculation paths for its resolution: (a) an integral method and (b) a differential method. Functions are generated for both cases that establish the verification or consistency of data, δψ for the integral test and δζ for the differential approach, which are statistically evaluated by their corresponding average values [δψ, δζ], and the standard deviations [s(δψ), s(δζ)]. The evaluation of these parameters for application to real cases is carried out using a set of hypothetical systems (with data generated artificially), for which the values are adequately changed to determine their influence on the method. In this way, the requirements of the proposed method for the data are evaluated and their behavior in response to any disruption in the canonical variables (p,T, phase compositions). The conditions for thermodynamic consistency of data are:δψ<2, s(δψ)<0.2δζ<5. In systems with VLLE, in addition to the previous criteria, must occur that: δXLLE<0.05 and δTLLE<0.5. The new proposed method has been tested with a set of 300 experimental binary systems, biphasic and triphasic, obtained from published bibliography, and the results are compared with those of other tests commonly used for testing thermodynamic consistency. The results show that the greater rigor of the proposed method is mainly due to the simultaneous verification of various independent variables. As a result, the conditions for the new test are verified for fewer systems than using other tests mentioned in the literature (i.e., Fredenslund-test and direct of Van Ness). Its unique application is sufficient to ensure the consistency of experimental data, without using other tests.en_US
dc.languageengen_US
dc.relation.ispartofAIChE journalen_US
dc.sourceAIChE Journal[ISSN 0001-1541],v. 63, p. 5125-5148en_US
dc.subject2213 Termodinámicaen_US
dc.subject.otherConsistency-testen_US
dc.subject.otherPhase equilibriaen_US
dc.subject.otherVLEen_US
dc.subject.otherVLLEen_US
dc.subject.otherModelingen_US
dc.titleA rigorous method to evaluate the consistency of experimental data in phase equilibria. Application to VLE and VLLEen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/aic.15876en_US
dc.identifier.scopus85025109903-
dc.identifier.isi000412727500033-
dcterms.isPartOfAiche Journal
dcterms.sourceAiche Journal[ISSN 0001-1541],v. 63 (11), p. 5125-5148
dc.contributor.authorscopusid35112937200-
dc.contributor.authorscopusid7402623992-
dc.contributor.authorscopusid7102458505-
dc.identifier.eissn1547-5905-
dc.description.lastpage5148en_US
dc.identifier.issue11-
dc.description.firstpage5125en_US
dc.relation.volume63en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000412727500033-
dc.contributor.daisngid330640-
dc.contributor.daisngid2736231-
dc.contributor.daisngid170099-
dc.contributor.daisngid55744-
dc.identifier.investigatorRIDM-1895-2014-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Fernandez, LJ-
dc.contributor.wosstandardWOS:Ortega, J-
dc.contributor.wosstandardWOS:Wisniak, J-
dc.date.coverdateNoviembre 2017en_US
dc.identifier.ulpgces
dc.description.sjr1,015
dc.description.jcr3,326
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0002-6924-3444-
crisitem.author.orcid0000-0002-6924-3444-
crisitem.author.orcid0000-0002-8304-2171-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFernández Suárez, Luis Jesús-
crisitem.author.fullNameFernández Suárez, Luis Jesús-
crisitem.author.fullNameOrtega Saavedra, Juan-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

15
actualizado el 24-mar-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 25-feb-2024

Visitas

109
actualizado el 17-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.