Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/35371
DC FieldValueLanguage
dc.contributor.authorOrtega, J.en_US
dc.contributor.authorWisniak, Jaimeen_US
dc.contributor.authorFernández, Luisen_US
dc.contributor.otherFernandez, Luis-
dc.date.accessioned2018-04-13T11:32:31Z-
dc.date.available2018-04-13T11:32:31Z-
dc.date.issued2017en_US
dc.identifier.issn0098-1354en_US
dc.identifier.urihttp://hdl.handle.net/10553/35371-
dc.description.abstractThis work presents a rigorous method to analyze the thermodynamic consistency of VLE and VLLE data of multicomponent systems, as an extension of a method previously proposed for binary solutions. The method or proposed test verifies the coherence between the Gibbs-Duhem equation and experimental data, using the same number of equations as degrees of freedom of the system. Resolution is achieved by means of two methods called the integral-form and differential-form, and for each of these, characteristic parameters that qualify the quality of the data are generated. The integration of the equation above mentioned between data pairs generates the residuals delta psi and constitutes the integral-form. This form verifies the consistency when the value of these residuals is lower than the maximum value, calculated as epsilon(m)(psi) = k(psi) epsilon(M,0)(psi) , where epsilon(M,0)(psi) is the error associated with psi at each point and k(psi) = 5; it should occurs that epsilon(m)(psi) < = 4. In the application of the differential-form each partial derivative of psi is verified and can be used to verify the coherence between the compositions of each component in all the phases by the residual delta zeta i. The maximum values of these residuals are established by epsilon(m)(zeta i) = k(zeta i)epsilon(M,0)(zeta i) where epsilon(M,0)(zeta i) is the maximum permissible error and k(zeta i) = 5, it should occurs that epsilon(m)(zeta i) < = vertical bar 0.1{[}max(zeta i)-min(zeta i)]vertical bar. The limits of the parameters for the proposed test are established after applying the method to several systems generated artificially. The test was applied to a set of real systems, 50 ternaries and 2 quaternaries, verifying the degree of consistency/inconsistency according to the parameters defined. The behavior of the test is compared with that of Wisniak-Tamir in multicomponent systems. In summary, the proposed test is shown to be a useful tool to assess the quality of VLE and VLLE data of multicomponent systems.en_US
dc.languageengen_US
dc.relation.ispartofComputers and Chemical Engineeringen_US
dc.sourceComputers and Chemical Engineering[ISSN 0098-1354],v. 106, p. 437-463en_US
dc.subject3303 ingeniería y tecnología químicasen_US
dc.subject.otherConsistency-testen_US
dc.subject.otherVLEen_US
dc.subject.otherVLLEen_US
dc.subject.otherModelingen_US
dc.subject.otherMulticomponenten_US
dc.subject.otherProgrammingen_US
dc.titleNew computational tool to evaluate experimental VLE and VLLE data of multicomponent systemsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compchemeng.2017.07.003en_US
dc.identifier.scopus85025112812-
dc.identifier.isi000412192800032-
dcterms.isPartOfComputers & Chemical Engineering-
dcterms.sourceComputers & Chemical Engineering[ISSN 0098-1354],v. 106, p. 437-463-
dc.contributor.authorscopusid35112937200-
dc.contributor.authorscopusid7402623992-
dc.contributor.authorscopusid7102458505-
dc.identifier.eissn1873-4375-
dc.description.lastpage463en_US
dc.description.firstpage437en_US
dc.relation.volume106en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000412192800032-
dc.contributor.daisngid22033796-
dc.contributor.daisngid2736231-
dc.contributor.daisngid170099-
dc.contributor.daisngid55744-
dc.identifier.investigatorRIDM-1895-2014-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Fernandez, L-
dc.contributor.wosstandardWOS:Ortega, J-
dc.contributor.wosstandardWOS:Wisniak, J-
dc.date.coverdateEnero 2017en_US
dc.identifier.ulpgces
dc.description.sjr1,024
dc.description.jcr3,113
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.deptGIR IDeTIC: División de Ingeniería Térmica e Instrumentación-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0002-8304-2171-
crisitem.author.orcid0000-0002-6924-3444-
crisitem.author.orcid0000-0002-8304-2171-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameOrtega Saavedra, Juan-
crisitem.author.fullNameFernández Suárez, Luis Jesús-
crisitem.author.fullNameOrtega Saavedra, Juan-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 17, 2024

Page view(s)

45
checked on Oct 28, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.