Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/35370
Title: | Primary and secondary aqueous two-phase systems composed of thermo switchable polymers and bio-derived ionic liquids | Authors: | Song, Cher Pin Ramanan, Ramakrishnan Nagasundara Vijayaraghavan, R. MacFarlane, Douglas R. Chan, Eng-Seng Coutinho, Joao A.P. Fernández, Luis Ooi, Chien-Wei |
UNESCO Clasification: | 3303 ingeniería y tecnología químicas | Keywords: | Liquid-liquid equilibrium Cholinium aminoate Poly(propylene glycol) Thermodynamics Lower critical solution temperature, et al |
Issue Date: | 2017 | Journal: | Journal of Chemical Thermodynamics | Abstract: | The liquid-liquid equilibrium (LLE) data for aqueous two-phase systems (ATPSs) comprising poly(propylene glycol) 400 (PPG 400) and cholinium-aminoate-based ([Ch][AA]) ionic liquid were determined experimentally at T = (288.15 and 308.15) K, while the LLE data at T = 298.15 K was adopted from our previous work for comparison. The experimental binodal data were satisfactorily fitted to a temperature-dependent nonlinear empirical expression. The reliability of tie-line data was confirmed by fitting the experimental data with the Othmer-Tobias and Bancroft equations. Furthermore, for the first time, the electrolyte nonrandom two-liquid model (e-NRTL) was used to correlate the tie-line data of PPG 400 + [Ch][AA] + water systems. The correlations of LLE data using these models provide a good description of the experimental values. The effect of temperature on the phase-forming capabilities of the corresponding [Ch][AA] was assessed using the experimental binodal data and the salting-out coefficient (k2) derived from the Setschenow-type equation. The values of k2 were well correlated to the phase-forming abilities of [Ch][AA], and were found to increase at higher temperature. Upon heating to 308.15 K, the solution of (PPG 400)-rich top phase from the primary PPG 400 + [Ch][AA] + water systems formed the secondary ATPSs. The LLE data of the secondary PPG 400 + [Ch][AA] + water systems was also determined. The PPG 400 was concentrated in the top phase of the secondary ATPS; this could serve as a means to recover PPG 400 from the primary ATPS via the formation of secondary ATPS. | URI: | http://hdl.handle.net/10553/35370 | ISSN: | 0021-9614 | DOI: | 10.1016/j.jct.2017.07.028 | Source: | Journal Of Chemical Thermodynamics[ISSN 0021-9614],v. 115, p. 191-201 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
16
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
16
checked on Mar 30, 2025
Page view(s)
67
checked on Dec 14, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.