Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/33735
Título: | Supplementation of arachidonic acid rich oil in European sea bass juveniles (Dicentrarchus labrax) diets: effects on growth performance, tissue fatty acid profile and lipid metabolism | Autores/as: | Torrecillas, Silvia Betancor, M. Caballero Cansino, María José Rivero-Ramírez, Fernando Robaina, L. Izquierdo, M. Montero, D. |
Clasificación UNESCO: | 3105 Peces y fauna silvestre 230218 Lípidos 310507 Hábitos de alimentación 310502 Piscicultura |
Palabras clave: | Arachidonic acid Dicentrarchus labrax Growth performance Lipid metabolism Tissue fatty acid profile |
Fecha de publicación: | 2018 | Publicación seriada: | Fish Physiology and Biochemistry | Resumen: | The aim of this study was to evaluate the effects of increasing dietary arachidonic acid (ARA) levels (from 1 to 6% of total fatty acids) on European sea bass (Dicentrarchus labrax) juveniles’ growth performance, tissue fatty acid profile, liver morphology as well as long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis, triglyceride and cholesterol synthesis and lipid transport. A diet with total fish oil (FO) replacement and defatted fish meal (FM) containing a 0.1-g ARA g −1 diet was added to the experimental design as a negative control diet. Dietary ARA inclusion levels below 0.2 g ARA g −1 diet significantly worsened growth even only 30 days after the start of the feeding trial, whereas dietary ARA had no effect on fish survival. Liver, muscle and whole body fatty acid profile mainly reflected dietary contents and ARA content increased accordingly with ARA dietary levels. Tissue eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) levels were positively correlated among them. Hepatic lipid vacuolization increased with reduced dietary ARA levels. Expressions of fatty acyl desaturase 2 and 3-hydroxy-3-methylglutaryl-coenzyme genes were upregulated in fish fed the negative control diet compared to the rest of the dietary treatments denoting the influence of ARA on lipid metabolism. Results obtained highlight the need to include adequate n-6 levels and not only n-3 LC-PUFA levels in European sea bass diets. | URI: | http://hdl.handle.net/10553/33735 | ISSN: | 0920-1742 | DOI: | 10.1007/s10695-017-0433-5 | Fuente: | Fish Physiology and Biochemistry[ISSN 0920-1742],v. 44, p. 283-300 | URL: | http://api.elsevier.com/content/abstract/scopus_id/85032894027 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.