Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/17857
Título: Learning to recognize faces incrementally
Autores/as: Déniz Suárez, Oscar
Lorenzo, J. 
Castrillon, M. 
Mendez, J. 
Falcón Martel, Antonio 
Clasificación UNESCO: 120304 Inteligencia artificial
Fecha de publicación: 2007
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 29th Annual Symposium of the German-Association-for-Pattern-Recognition 
Resumen: Most face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.
URI: http://hdl.handle.net/10553/17857
ISBN: 978-3-540-74933-2
ISSN: 0302-9743
DOI: 10.1007/978-3-540-74936-3_37
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 4713 LNCS, p. 365-374
Colección:Actas de congresos
miniatura
Postprint
Adobe PDF (161,19 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons