Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/16443
Title: | The meccano method for isogeometric solid modeling | Authors: | Escobar, Jose María Cascón Barbero, José Manuel Rodríguez, Eduardo Montenegro, Rafael |
UNESCO Clasification: | 120613 Ecuaciones diferenciales en derivadas parciales 1206 Análisis numérico |
Keywords: | Trivariate T-spline Isogeometric analysis Volumetric parameterization Mesh optimization Meccano method |
Issue Date: | 2011 | Conference: | 20th International Meshing Roundtable, IMR 2011 | Abstract: | We present a new method to construct a trivariate T-spline representation of complex solids for the application of isogeometric analysis. The proposed technique only demands the surface of the solid as input data. The key of this method lies in obtaining a volumetric parameterization between the solid and a simple parametric domain. To do that, an adaptive tetrahedral mesh of the parametric domain is isomorphically transformed onto the solid by applying the meccano method. The control points of the trivariate T-spline are calculated by imposing the interpolation conditions on points situated both on the inner and on the surface of the solid... | URI: | http://hdl.handle.net/10553/16443 | ISBN: | 9783642247330 | DOI: | 10.1007/978-3-642-24734-7-30 | Source: | Proceedings of the 20th International Meshing Roundtable, IMR 2011, 23-26 octubre, París, France [ISBN 9783642247330] p. 551-568 | Rights: | by-nc-nd |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
2
checked on Dec 8, 2024
Page view(s)
80
checked on Jun 29, 2024
Download(s)
197
checked on Jun 29, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.