Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/16403
Título: A study for the self similarity smile detection
Autores/as: Freire-Obregón, David
Antón Canalís, Luis
Castrillón, Modesto 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Classification
Fecha de publicación: 2009
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: Joint International Conference on Biometric ID Management and Multimodal Communication (BioID-MultiComm) 
Joint COST 2101 and 2102 International Conference on Biometric ID Management and Multimodal Communication, BioID_MultiComm 2009 
Resumen: This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) combined with self similarity (LAC) as main descriptors of the image, along with the powerful Support Vector Machines classifier. Results show that error rates can be acceptable and the self similarity approach for the detection of smiles is suitable for real-time interaction, although there is still room for improvement.
URI: http://hdl.handle.net/10553/16403
ISBN: 978-3-642-04390-1
3642043909
ISSN: 0302-9743
DOI: 10.1007/978-3-642-04391-8_13
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 5707 LNCS, p. 97-104
Colección:Actas de congresos
miniatura
Adobe PDF (120,44 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons