Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/16240
Título: | Learning to recognize gender using experince | Autores/as: | Castrillón-Santana, Modesto Lorenzo Navarro, José Javier Freire-Obregón, David Déniz Suárez, Oscar |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Facial analysis Online learning Gender |
Fecha de publicación: | 2010 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Proyectos: | Tecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos. | Publicación seriada: | Proceedings - International Conference on Image Processing | Conferencia: | IEEE International Conference on Image Processing | Resumen: | Automatic facial analysis abilities are commonly integratedin a system by a previous off-line learning stage. In this pa-per we argue that a facial analysis system would improve itsfacial analysis capabilities based on its own experience simi-larly to the way a biological system, i.e. the human system,does throughout the years. The approach described, focusedon gender classification, updates its knowledge according tothe classification results. The presented gender experiments suggest that this approach is promising, even when just a short simulation of what for humans would take years of acquisition experience was performed. | URI: | http://hdl.handle.net/10553/53650 | ISBN: | 978-1-4244-7992-4 | ISSN: | 1522-4880 | DOI: | 10.1109/ICIP.2010.5653661 | Fuente: | Proceedings of 2010 IEEE 17th in Conference on Image Processing, ICIP (5653661), Hong Kong, China, september 26-29, ISSN 1522-4880, p. 4533-4536 |
Colección: | Actas de congresos |
Visitas
78
actualizado el 29-jun-2024
Descargas
40
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Este elemento está sujeto a una licencia Licencia Creative Commons