Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/158573
Campo DC Valoridioma
dc.contributor.authorValdez, Zayd Isaacen_US
dc.contributor.authorDíaz, Luz Alexandraen_US
dc.contributor.authorFlores-Chávez, Santiagoen_US
dc.contributor.authorCornejo, Miguel Vizcardoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2026-02-20T09:55:10Z-
dc.date.available2026-02-20T09:55:10Z-
dc.date.issued2024en_US
dc.identifier.issn2325-8861en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/158573-
dc.description.abstractThe term fetal arrhythmia refers to irregular fetal heart rhythms, with the established heart rate range being 120 to 160 beats per minute (bpm). Fetal arrhythmias occur in 1 to 2% of pregnancies; and although the majority of these are benign and transient, both tachyarrhythmia and bradyarrhythmia in some cases can indicate a serious condition for the fetus or the mother. Thus, a persistent fetal arrhythmia can lead to decreased cardiac output, heart failure, hydrops, and even fetal demise. As a result of this situation, an early diagnosis is crucial to adequately address this condition and reduce related mortality. Therefore, this study proposes the use of SVD entropy for characterizing ECG data from 6 channels (fetal and maternal), aiming to differentiate between healthy and diseased individuals. Consequently, a neural network could classify them, thus enabling a non-invasive early diagnosis of fetal arrhythmia. Additionally, it aims to enhance the performance of this technique by employing genetic algorithms for data augmentation and selecting the optimal architecture for the neural network, thereby ensuring a global accuracy of over 88% in fetal arrhythmia risk stratification.en_US
dc.languageengen_US
dc.relation.ispartofComputers in Cardiologyen_US
dc.sourceComputing in Cardiology[ISSN 2325-8861],v. 51, (Enero 2024)en_US
dc.subject3314 Tecnología médicaen_US
dc.titleSingular Value Decomposition Entropy Analysis and Deep Learning Models Based on Genetic Algorithms for Early Diagnosis of Fetal Arrhythmiaen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference51st International Computing in Cardiology, CinC 2024en_US
dc.identifier.doi10.22489/CinC.2024.150en_US
dc.identifier.scopus105028379548-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58811250200-
dc.contributor.authorscopusid58147880900-
dc.contributor.authorscopusid60347702300-
dc.contributor.authorscopusid60347702400-
dc.contributor.authorscopusid9634135600-
dc.identifier.eissn2325-887X-
dc.relation.volume51en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2024en_US
dc.identifier.conferenceidevents156154-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate14-05-2024-
crisitem.event.eventsenddate16-05-2024-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Actas de congresos
Adobe PDF (338,38 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.