Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/158571
| Título: | Analysis of COVID Patients Employing Approximate Entropy and Deep Learning for Classification and Early Diagnosis | Autores/as: | Cornejo, Diego Rodrigo Ravelo-García, Antonio G. Rodríguez, María Fernanda Díaz, Luz Alexandra Cabrera-Caso, Victor Condori-Merma, Dante Cornejo, Miguel Vizcardo |
Clasificación UNESCO: | 3314 Tecnología médica | Fecha de publicación: | 2024 | Publicación seriada: | Computers in Cardiology | Conferencia: | 51st International Computing in Cardiology, CinC 2024 | Resumen: | Due to its rapid propagation and enormous number of infected people, COVID-19 is the greatest pandemic in the past 100 years, with millions of deaths. The need for accessible, quick, and non-invasive diagnostic techniques persists despite a decline in cases recently. Because of this, in the current work we develop a densely connected neural network that uses heart rate data to identify between patients with COVID and healthy individuals. The Stanford University database was used, which underwent a feature extraction and the usage of approximation entropy. With an accuracy of 93% and an AUC of 0.956, the results demonstrated to be more than good at categorization, supporting the usefulness of this approach for the accurate identification of COVID cases. | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/158571 | ISSN: | 2325-8861 | DOI: | 10.22489/CinC.2024.173 | Fuente: | Computing in Cardiology[ISSN 2325-8861],v. 51, (Enero 2024) |
| Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.