Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/158571
Título: Analysis of COVID Patients Employing Approximate Entropy and Deep Learning for Classification and Early Diagnosis
Autores/as: Cornejo, Diego Rodrigo
Ravelo-García, Antonio G. 
Rodríguez, María Fernanda
Díaz, Luz Alexandra
Cabrera-Caso, Victor
Condori-Merma, Dante
Cornejo, Miguel Vizcardo
Clasificación UNESCO: 3314 Tecnología médica
Fecha de publicación: 2024
Publicación seriada: Computers in Cardiology 
Conferencia: 51st International Computing in Cardiology, CinC 2024 
Resumen: Due to its rapid propagation and enormous number of infected people, COVID-19 is the greatest pandemic in the past 100 years, with millions of deaths. The need for accessible, quick, and non-invasive diagnostic techniques persists despite a decline in cases recently. Because of this, in the current work we develop a densely connected neural network that uses heart rate data to identify between patients with COVID and healthy individuals. The Stanford University database was used, which underwent a feature extraction and the usage of approximation entropy. With an accuracy of 93% and an AUC of 0.956, the results demonstrated to be more than good at categorization, supporting the usefulness of this approach for the accurate identification of COVID cases.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/158571
ISSN: 2325-8861
DOI: 10.22489/CinC.2024.173
Fuente: Computing in Cardiology[ISSN 2325-8861],v. 51, (Enero 2024)
Colección:Actas de congresos
Adobe PDF (262,38 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.