Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/158201
| Título: | Video Action Recognition in SoC FPGAs Driven by Neural Architecture Search | Autores/as: | González Suárez,Daniel De Jesús Hernández Fernández, Pedro Fernández, Víctor Marrero Callicó, Gustavo Iván |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Neural Architecture Search FPGA System on Chip Video Action Recognition Reinforcement Learning, et al. |
Fecha de publicación: | 2025 | Proyectos: | OASIS Open AI-driven Stack for enhanced HPEC platforms in Integrated Systems | Conferencia: | 40th Conference on Design of Circuits and Integrated Systems (DCIS) 2025. Santander | Resumen: | This work presents a hardware-aware Neural Architecture Search (NAS) framework for video-based human action recognition, targeting real-time deployment on FPGAbased System-on-Chip (SoC) platforms. The proposed method explores a constrained search space of Convolutional Neural Network (CNN)–Recurrent Neural Network (RNN) architectures aligned with a hardware-software pipeline where CNNs are mapped to FPGA Deep Learning Processing Units (DPUs) and RNNs to embedded ARM cores. A reinforcement learning (RL)-based controller, guided by a position-based discounted reward strategy, progressively learns to generate architectures that emphasize high-impact design decisions. Experiments on the UCF101 dataset demonstrate that the proposed architectures achieve 81.07% accuracy, among the highest reported for CNNRNN models relying exclusively on spatial information. The results validate the effectiveness of the proposed framework in driving hardware-compatible and performance-optimized architecture exploration | URI: | https://accedacris.ulpgc.es/jspui/handle/10553/158201 | ISBN: | 979-8-3315-8091-9 | DOI: | 10.1109/DCIS67520.2025.11281932 |
| Colección: | Ponencias |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.