Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/158201
Campo DC Valoridioma
dc.contributor.authorGonzález Suárez,Daniel De Jesúsen_US
dc.contributor.authorHernández Fernández, Pedroen_US
dc.contributor.authorFernández, Víctoren_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.date.accessioned2026-02-16T13:02:26Z-
dc.date.available2026-02-16T13:02:26Z-
dc.date.issued2025en_US
dc.identifier.isbn979-8-3315-8091-9en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/158201-
dc.description.abstractThis work presents a hardware-aware Neural Architecture Search (NAS) framework for video-based human action recognition, targeting real-time deployment on FPGAbased System-on-Chip (SoC) platforms. The proposed method explores a constrained search space of Convolutional Neural Network (CNN)–Recurrent Neural Network (RNN) architectures aligned with a hardware-software pipeline where CNNs are mapped to FPGA Deep Learning Processing Units (DPUs) and RNNs to embedded ARM cores. A reinforcement learning (RL)-based controller, guided by a position-based discounted reward strategy, progressively learns to generate architectures that emphasize high-impact design decisions. Experiments on the UCF101 dataset demonstrate that the proposed architectures achieve 81.07% accuracy, among the highest reported for CNNRNN models relying exclusively on spatial information. The results validate the effectiveness of the proposed framework in driving hardware-compatible and performance-optimized architecture explorationen_US
dc.languageengen_US
dc.relationOASIS Open AI-driven Stack for enhanced HPEC platforms in Integrated Systemsen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherNeural Architecture Searchen_US
dc.subject.otherFPGAen_US
dc.subject.otherSystem on Chipen_US
dc.subject.otherVideo Action Recognitionen_US
dc.subject.otherReinforcement Learningen_US
dc.subject.otherEmbedded AIen_US
dc.titleVideo Action Recognition in SoC FPGAs Driven by Neural Architecture Searchen_US
dc.typeconference_paperen_US
dc.relation.conference40th Conference on Design of Circuits and Integrated Systems (DCIS) 2025. Santanderen_US
dc.identifier.doi10.1109/DCIS67520.2025.11281932en_US
dc.description.lastpage155en_US
dc.description.firstpage150en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Grupo Universitario de Investigación en Relaciones Internacionales-
crisitem.author.deptGIR IUMA: Sistemas de Información y Comunicaciones-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-3848-2116-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgDepartamento de Ciencias Históricas-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameGonzález Suárez,Daniel De Jesús-
crisitem.author.fullNameHernández Fernández, Pedro-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Ponencias
Adobe PDF (451,07 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.