Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/158201
| Campo DC | Valor | idioma |
|---|---|---|
| dc.contributor.author | González Suárez,Daniel De Jesús | en_US |
| dc.contributor.author | Hernández Fernández, Pedro | en_US |
| dc.contributor.author | Fernández, Víctor | en_US |
| dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
| dc.date.accessioned | 2026-02-16T13:02:26Z | - |
| dc.date.available | 2026-02-16T13:02:26Z | - |
| dc.date.issued | 2025 | en_US |
| dc.identifier.isbn | 979-8-3315-8091-9 | en_US |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/158201 | - |
| dc.description.abstract | This work presents a hardware-aware Neural Architecture Search (NAS) framework for video-based human action recognition, targeting real-time deployment on FPGAbased System-on-Chip (SoC) platforms. The proposed method explores a constrained search space of Convolutional Neural Network (CNN)–Recurrent Neural Network (RNN) architectures aligned with a hardware-software pipeline where CNNs are mapped to FPGA Deep Learning Processing Units (DPUs) and RNNs to embedded ARM cores. A reinforcement learning (RL)-based controller, guided by a position-based discounted reward strategy, progressively learns to generate architectures that emphasize high-impact design decisions. Experiments on the UCF101 dataset demonstrate that the proposed architectures achieve 81.07% accuracy, among the highest reported for CNNRNN models relying exclusively on spatial information. The results validate the effectiveness of the proposed framework in driving hardware-compatible and performance-optimized architecture exploration | en_US |
| dc.language | eng | en_US |
| dc.relation | OASIS Open AI-driven Stack for enhanced HPEC platforms in Integrated Systems | en_US |
| dc.subject | 3307 Tecnología electrónica | en_US |
| dc.subject.other | Neural Architecture Search | en_US |
| dc.subject.other | FPGA | en_US |
| dc.subject.other | System on Chip | en_US |
| dc.subject.other | Video Action Recognition | en_US |
| dc.subject.other | Reinforcement Learning | en_US |
| dc.subject.other | Embedded AI | en_US |
| dc.title | Video Action Recognition in SoC FPGAs Driven by Neural Architecture Search | en_US |
| dc.type | conference_paper | en_US |
| dc.relation.conference | 40th Conference on Design of Circuits and Integrated Systems (DCIS) 2025. Santander | en_US |
| dc.identifier.doi | 10.1109/DCIS67520.2025.11281932 | en_US |
| dc.description.lastpage | 155 | en_US |
| dc.description.firstpage | 150 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| dc.description.numberofpages | 6 | en_US |
| dc.utils.revision | Sí | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-TEL | en_US |
| dc.contributor.buulpgc | BU-TEL | en_US |
| dc.contributor.buulpgc | BU-TEL | en_US |
| dc.contributor.buulpgc | BU-TEL | en_US |
| item.grantfulltext | open | - |
| item.fulltext | Con texto completo | - |
| crisitem.author.dept | GIR Grupo Universitario de Investigación en Relaciones Internacionales | - |
| crisitem.author.dept | GIR IUMA: Sistemas de Información y Comunicaciones | - |
| crisitem.author.dept | IU de Microelectrónica Aplicada | - |
| crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
| crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
| crisitem.author.dept | IU de Microelectrónica Aplicada | - |
| crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
| crisitem.author.orcid | 0000-0003-3848-2116 | - |
| crisitem.author.orcid | 0000-0002-3784-5504 | - |
| crisitem.author.parentorg | Departamento de Ciencias Históricas | - |
| crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
| crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
| crisitem.author.fullName | González Suárez,Daniel De Jesús | - |
| crisitem.author.fullName | Hernández Fernández, Pedro | - |
| crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
| Colección: | Ponencias | |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.