Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/158196
Título: Evaluation of a visual question answering architecture for pedestrian attribute recognition
Autores/as: Castrillón-Santana, Modesto 
Sánchez-Nielsen
Freire-Obregon, David 
Oliverio J. Santana 
Hernández-Sosa, Daniel 
Lorenzo-Navarro, Javier 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Object Recognition
Computer Vision
Object vision
Biometrics
Fecha de publicación: 2023
Editor/a: Springer
Proyectos: PID2021-122402OB-C22
Conferencia: 20th International Conference on Computer Analysis of Images and Patterns 2023
Resumen: Pedestrian attribute recognition (PAR) ensures public safety and security. By automatically detecting attributes such as clothing color, accessories, and hairstyles, surveillance systems can provide valuable information for criminal investigations, aiding in identifying suspects based on their appearances. Additionally, in crowd management scenarios, PAR enables monitoring of specific groups, such as individuals wearing safety gear at construction sites or identifying potential threats in sensitive areas. Real-time attribute recognition enhances situational awareness and facilitates rapid response during emergencies, thereby contributing to public spaces’ overall safety and security. This work proposes applying the BLIP-2 Visual Question Answering (VQA) framework to address the PAR problem. By employing Large Language Models (LLMs), we have achieved an accuracy rate of 92% in the private set. This combination of VQA and LLMs makes it possible to effectively analyze visual information and answer questions related to pedestrian attributes, improving the accuracy and performance of PAR systems.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/158196
ISBN: 978-3-031-44236-0
DOI: https://doi.org/10.1007/978-3-031-44237-7_2
Colección:Actas de congresos
Adobe PDF (1,8 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.