Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/15756
Title: Automatic clothes segmentation for soft biometrics
Authors: Freire-Obregon, D. 
Castrillon-Santana, M. 
Ramon-Balmaseda, E. 
Lorenzo-Navarro, J. 
UNESCO Clasification: 120304 Inteligencia artificial
Keywords: Clothing
Feature extraction
Image segmentation
Visual databases
Issue Date: 2014
Journal: 2014 IEEE International Conference on Image Processing, ICIP 2014
Abstract: During the last decade, researchers have verified that clothing can provide information for gender recognition. However, before extracting features, it is necessary to segment the clothing region. We introduce a new clothes segmentation method based on the application of the GrabCut technique over a trixel mesh, obtaining very promising results for a close to real time system. Finally, the clothing features are combined with facial and head context information to outperform previous results in gender recognition with a public database.
URI: https://accedacris.ulpgc.es/handle/10553/15756
ISBN: 9781479957514
DOI: 10.1109/ICIP.2014.7026007
Source: 2014 IEEE International Conference on Image Processing, ICIP 2014 (7026007), p. 4972
Appears in Collections:Actas de congresos
Thumbnail
Postprint
Adobe PDF (1,14 MB)
Show full item record

SCOPUSTM   
Citations

16
checked on Jun 8, 2025

Page view(s) 1

804
checked on Jan 10, 2026

Download(s)

189
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



This item is licensed under a Creative Commons License Creative Commons