Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/157550
Title: Unexpected microbial rhodopsin dynamics in sync with phytoplankton blooms
Authors: Gómez Consarnau, Laura
Hassanzadeh, Babak
Villarreal, Estefany
Cuevas Cruz, Miguel
Arístegui Ruiz, Javier 
Logares, Ramiro
García Latorre, Francisco Javier 
Lago Lestón, Asunción
Steindler, Laura
Sañudo Wilhelmy, Sergio A.
UNESCO Clasification: 3308 Ingeniería y tecnología del medio ambiente
Keywords: Proteorhodopsin Genes
Community Structure
Water Column
Marine
Variability, et al
Issue Date: 2025
Journal: Nature Communications 
Abstract: The surface ocean is the largest sunlit environment on Earth where marine microalgae are known as the main drivers of global productivity. However, rhodopsin phototrophs are actually the most abundant metabolic group, suggesting a major role in the biogeochemical cycles. While previous studies have shown that rhodopsin-containing bacterioplankton thrive in the most severely nutrient-depleted environments, growing evidence suggest that this type of phototrophy may also be relevant in nutrient-rich environments. To examine its role in productive waters, we investigated the monthly rhodopsin dynamics in the upwelling system of the Southern California Bight by measuring retinal–the photoreactive chromophore essential for rhodopsin function–in seawater. Unlike oligotrophic regions, rhodopsin levels peaked during the highly productive spring phytoplankton bloom, coinciding with the highest chlorophyll concentrations. Heterotrophic bacterial abundances, particularly within the order Flavobacteriales, correlated strongly with rhodopsin concentrations, allowing us to build linear models to predict rhodopsin distributions in a productive environment. Metagenomic data further showed that Flavobacteriales also dominated the rhodopsin gene pool when the highest rhodopsin levels were recorded, underscoring their key contribution to light-driven energy capture. Overall, our findings reveal that rhodopsin phototrophy plays a substantial role in productive marine systems, broadening its recognized importance far beyond oligotrophic oceans.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/157550
ISSN: 2041-1723
DOI: 10.1038/s41467-025-67474-1
Source: Nature Communications[ISSN 2041-1723],v. 17 (1), (Diciembre 2026)
Appears in Collections:Artículos
Adobe PDF (1,33 MB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.