Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/157549
DC FieldValueLanguage
dc.contributor.authorGarcía Domínguez, Jesúsen_US
dc.contributor.authorMarcos, J. Danielen_US
dc.contributor.authorBlanco Marigorta, Ana Maríaen_US
dc.contributor.authorGarcía Salaberri, Pablo A.en_US
dc.date.accessioned2026-02-09T16:53:37Z-
dc.date.available2026-02-09T16:53:37Z-
dc.date.issued2026en_US
dc.identifier.issn0196-8904en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/157549-
dc.description.abstractThis study presents the design, modelling, and optimisation of a novel zero-emissions polygeneration system fully powered by renewable energy sources. A new integration approach supported by an advanced optimisation framework is proposed to enhance the thermodynamic performance and overall efficiency. The system uniquely combines a hybrid Photovoltaic-Thermal (PVT) powered Organic Rankine Cycle (ORC) employing flexible Perovskite Solar Cell (PSC) technology, a double-effect compression-absorption refrigeration subsystem, and hydrogen production via a Proton Exchange Membrane (PEM) electrolyser. The cascading configuration maxi mises energy utilisation by recovering low-grade thermal energy, promoting synergistic operation, enabling simultaneous multi-carrier generation, and reducing exergy losses compared to standalone systems. Its appli cations are particularly relevant for both buildings and energy-intensive industrial processes, where integrated renewable solutions can provide high efficiency, flexibility, and emission-free operation. An advanced hybrid optimisation methodology coupling an Artificial Neural Network (ANN) with a multi-objective genetic algorithm is applied to identify optimal configurations through performance-cost trade-offs. For a three-objective function, the optimum design achieves an exergy efficiency of 19.1 %, net power output of 69.6 kW, and a cost rate of $ 14.2/h. Over a 20-year operation period, the system shows strong economic viability, yielding a payback period of 5.7 years, a Net Present Value (NPV) of $602,000, and an Internal Rate of Return (IRR) of 11.6 %.en_US
dc.languageengen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.sourceEnergy Conversion and Management [0196-8904], v.349, (Enero 2026)en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.otherPolygenerationen_US
dc.subject.otherOrganic rankine cycleen_US
dc.subject.otherPhotovoltaic–thermal (PVT) concentrating collectorsen_US
dc.subject.otherCascaded refrigeration systemen_US
dc.subject.otherPEM electrolyseren_US
dc.titleDesign and optimisation of a novel solar-driven ORC-based polygeneration system with hybrid PVT, cascade refrigeration, and PEM electrolysisen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.enconman.2025.120838en_US
dc.relation.volume349en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages26en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2026en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr2,659
dc.description.jcr10,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Appears in Collections:Artículos
Adobe PDF (7,52 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.