Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/157281
Título: Analysis of RR Interval Entropies for Discrimination Between Wake and Sleep States
Autores/as: Flores-Chávez, Santiago
Ravelo-García, Antonio 
Cornejo, Miguel Vizcardo
Clasificación UNESCO: 33 Ciencias tecnológicas
Fecha de publicación: 2024
Publicación seriada: Computing in Cardiology 
Conferencia: 51st International Computing in Cardiology CINC- 2024 Karlsruhe Germany
Resumen: This study use of Approximate Entropy (ApEn) for classification of sleep stages using R-R intervals derived from ECG signals. The results demonstrate that ApEn can effectively differentiate between sleep stages and wakefulness across varying embedding dimensions (m) and time windows. In lower dimensions, higher entropy values correspond to deeper sleep stages, while in higher dimensions, the relationship reverses, associating higher entropy with REM, light sleep, and wakefulness. The analysis also reveals that specific time windows (e.g., 5 minutes) and embedding dimensions (e.g., m = 5) improve the discrimination between sleep and wake states. These findings suggest that ApEn is a valuable tool for non-invasive sleep monitoring and classification. Further studies are recommended to explore its applicability in broader and more diverse populations.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/157281
ISSN: 2325-8861
DOI: 10.22489/CinC.2024.354
Fuente: Computing in Cardiology[ISSN 2325-8861],v. 51, (Enero 2024)
Colección:Actas de congresos
Adobe PDF (522 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.