Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/157271
Campo DC Valoridioma
dc.contributor.authorLuque, Carlosen_US
dc.date.accessioned2026-02-06T07:30:43Z-
dc.date.available2026-02-06T07:30:43Z-
dc.date.issued2021en_US
dc.identifier.issn1424-8220en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/157271-
dc.description.abstractThermography enables non-invasive, accessible, and easily repeated foot temperature measurements for diabetic patients, promoting early detection and regular monitoring protocols, that limit the incidence of disabling conditions associated with diabetic foot disorders. The establishment of this application into standard diabetic care protocols requires to overcome technical issues, particularly the foot sole segmentation. In this work we implemented and evaluated several segmentation approaches which include conventional and Deep Learning methods. Multimodal images, constituted by registered visual-light, infrared and depth images, were acquired for 37 healthy subjects. The segmentation methods explored were based on both visual-light as well as infrared images, and optimization was achieved using the spatial information provided by the depth images. Furthermore, a ground truth was established from the manual segmentation performed by two independent researchers. Overall, the performance level of all the implemented approaches was satisfactory. Although the best performance, in terms of spatial overlap, accuracy, and precision, was found for the Skin and U-Net approaches optimized by the spatial information. However, the robustness of the U-Net approach is preferred.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.subjectInvestigaciónen_US
dc.titleSegmentation Approaches for Diabetic Foot Disordersen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s21030934en_US
dc.contributor.orcid0000-0003-0442-0785-
dc.identifier.issue3-
dc.investigacionIngeniería y Arquitecturaen_US
dc.identifier.external92067921-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,803
dc.description.jcr3,847
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.fulltextCon texto completo-
item.grantfulltextopen-
Colección:Artículos
Adobe PDF (8,15 MB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 08-feb-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.