Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156923
Campo DC Valoridioma
dc.contributor.authorHuber, Silviaen_US
dc.contributor.authorHansen, Lars B.en_US
dc.contributor.authorNielsen, Lisbeth T.en_US
dc.contributor.authorRasmussen, Mikkel L.en_US
dc.contributor.authorSølvsteen, Jonasen_US
dc.contributor.authorBerglund, Johnnyen_US
dc.contributor.authorPaz von Friesen, Carlosen_US
dc.contributor.authorDanbolt, Magnusen_US
dc.contributor.authorEnvall, Matsen_US
dc.contributor.authorInfantes Oanes, Eduardoen_US
dc.contributor.authorMoksnes, Peren_US
dc.date.accessioned2026-02-03T14:32:43Z-
dc.date.available2026-02-03T14:32:43Z-
dc.date.issued2021en_US
dc.identifier.issn1551-3777en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156923-
dc.description.abstractAccording to the EU Habitats directive, the Water Framework Directive, and the Marine Strategy Framework Directive, member states are required to map, monitor, and evaluate changes in quality and areal distribution of different marine habitats and biotopes to protect the marine environment more effectively. Submerged aquatic vegetation (SAV) is a key indicator of the ecological status of coastal ecosystems and is therefore widely used in reporting related to these directives. Environmental monitoring of the areal distribution of SAV is lacking in Sweden due to the challenges of large-scale monitoring using traditional small-scale methods. To address this gap, in 2020, we embarked on a project to combine Copernicus Sentinel-2 satellite imagery, novel machine learning (ML) techniques, and advanced data processing in a cloud-based web application that enables users to create up-to-date SAV classifications. At the same time, the approach was used to derive the first high-resolution SAV map for the entire coastline of Sweden, where an area of 1550 km2 was mapped as SAV. Quantitative evaluation of the accuracy of the classification using independent field data from three different regions along the Swedish coast demonstrated relative high accuracy within shallower areas, particularly where water transparency was high (average total accuracy per region 0.60–0.77). However, the classification missed large proportions of vegetation growing in deeper water (on average 31%–50%) and performed poorly in areas with fragmented or mixed vegetation and poor water quality, challenges that should be addressed in the development of the mapping methods towards integration into monitoring frameworks such as the EU directives. In this article, we present the results of the first satellite-derived SAV classification for the entire Swedish coast and show the implementation of a cloud-based SAV mapping application (prototype) developed within the frame of the project. Integr Environ Assess Manag 2022;18:909–920. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)en_US
dc.languageengen_US
dc.relation.ispartofIntegrated environmental assessment and managementen_US
dc.sourceIntegrated environmental assessment and management [ISSN], v. 18, n. 4, p. 909-920en_US
dc.subject251004 Botánica marinaen_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject.otherEcological statusen_US
dc.subject.otherEnvironmental monitoringen_US
dc.subject.otherMachine learningen_US
dc.subject.otherSentinel‐2en_US
dc.titleNovel approach to large-scale monitoring of submerged aquatic vegetation: a nationwide example from Swedenen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/ieam.4493en_US
dc.description.lastpage920en_US
dc.identifier.issue4-
dc.description.firstpage909en_US
dc.relation.volume18en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-9724-9237-
crisitem.author.fullNameInfantes Oanes, Eduardo-
Colección:Artículos
Adobe PDF (2,88 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.