Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/156586
Title: Wind exposure and sediment type determine the resilience and response of seagrass meadows to climate change
Authors: de Smit, Jaco C.
Bin Mohd Noor, Muhammad S.
Infantes Oanes, Eduardo 
Bouma, Tjeerd J.
UNESCO Clasification: 251004 Botánica marina
251090-1 Geología marina. Dinámica sedimentaria
Issue Date: 2021
Journal: Limnology and Oceanography 
Abstract: Seagrasses and bare sediment represent alternative stable states, with sediment resuspension being a key driver of system stability via the Seagrass–Sediment–Light (SSL) feedback. We explore the SSL feedback by quantifying the sediment stabilization by seagrass, and using these measurements to calculate under which conditions seagrass ends up in a turbid environment. We quantified in-situ sediment resuspension velocity thresholds (ucr) for Zostera marina growing in medium to fine sand, using a field flume inducing near-bed wave motion. ucr was determined for full length shoots, shoots clipped to 0.08 m, and removed shoots. We found that rhizomes did not influence ucr of the top sediment layer. Overall, ucr was linearly related to blade area, which became independent for sediment type when normalizing ucr for the resuspension threshold after shoot removal. Comparing measured ucr against natural wave conditions showed that the seagrass meadow at the study site is currently stable. Exploring the effects of changing hydrodynamic conditions revealed that effects of increasing storminess has limited influence on sediment resuspension and thus the SSL-feedback. Increasing mean wind velocity had a stronger influence on SSL-feedback dynamics by causing more frequent exceedance of ucr. The response of seagrasses to increasing wind pressure depends on bay topography. A fully exposed Z. marina meadow under low initial turbidity pressure trended toward bistability, as turbidity pressure increased mainly on bare sediments. The study site and a fully exposed Z. marina meadow under high initial turbidity pressure saw an increase in turbidity across all blade areas.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/156586
ISSN: 0024-3590
DOI: 10.1002/lno.11865
Source: Limnology and Oceanography [ISSN 0024-3590], v. 67, n. S1, p. 121-132
Appears in Collections:Artículos
Adobe PDF (2,09 MB)
Show full item record

WEB OF SCIENCETM
Citations

5
checked on Feb 1, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.