Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156564
Campo DC Valoridioma
dc.contributor.authorMarch, D.en_US
dc.contributor.authorAlós, J.en_US
dc.contributor.authorCabanellas-Reboredo, M.en_US
dc.contributor.authorInfantes Oanes, Eduardoen_US
dc.contributor.authorJordi, A.en_US
dc.contributor.authorPalmer, M.en_US
dc.date.accessioned2026-01-30T15:02:11Z-
dc.date.available2026-01-30T15:02:11Z-
dc.date.issued2013en_US
dc.identifier.issn0272-7714en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156564-
dc.description.abstractWe implement a Bayesian spatial approach to predict and map the probability of occurrence of seagrass Posidonia oceanica at high spatial resolution based environmental variables. We found that depth, near-bottom orbital velocities and a spectral pattern of Landsat imagery were relevant environmental variables, although there was no effect of slope or water residence time. We generated a data inventory of P. oceanica samples at Palma Bay, NW Mediterranean, from three main sources: side scan sonar, aerial imagery and a customized drop-camera system. A hierarchical Bayesian spatial model for non-Gaussian data was used to relate presence-absence data of P. oceanica with environmental variables in the presence of spatial autocorrelation (SA). A spatial dimension reduction method, the predictive process approach, was implemented to overcome computational constraints for moderately large datasets. Our results suggest that incorporating spatial random effects removes SA from the residuals and improves model fit compared to non-spatial regression models. The main products of this work were probability and uncertainty model maps, which could benefit seagrass management and the assessment of the ecological status of seagrass meadows.en_US
dc.languageengen_US
dc.relation.ispartofEstuarine, Coastal and Shelf Scienceen_US
dc.sourceEstuarine, Coastal and Shelf Science [ISSN 0272-7714], v. 131, p. 206-212 (Octubre 2013)en_US
dc.subject251004 Botánica marinaen_US
dc.subject120803 Aplicación de la probabilidaden_US
dc.subject.otherSeagrassen_US
dc.subject.otherGeographicalen_US
dc.subject.otherDistribution modelingen_US
dc.subject.otherBayesian hierarchical modelen_US
dc.subject.otherSpatial autocorrelationen_US
dc.titleA Bayesian spatial approach for predicting seagrass occurrenceen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ecss.2013.08.009en_US
dc.description.lastpage212en_US
dc.description.firstpage206en_US
dc.relation.volume131en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2013en_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,323
dc.description.jcr2,253
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-9724-9237-
crisitem.author.fullNameInfantes Oanes, Eduardo-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.