Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/156076
Campo DC Valoridioma
dc.contributor.authorZohrabi, Samanen_US
dc.contributor.authorSeiiedlou, Seyed Sadeghen_US
dc.contributor.authorGolpour, Imanen_US
dc.contributor.authorMellmann, Jochenen_US
dc.contributor.authorSturm, Barbaraen_US
dc.contributor.authorMarcos, José Danielen_US
dc.contributor.authorBlanco Marigorta, Ana Maríaen_US
dc.contributor.authorDidaran, Fardaden_US
dc.contributor.authorLefsrud, Marken_US
dc.date.accessioned2026-01-26T14:33:42Z-
dc.date.available2026-01-26T14:33:42Z-
dc.date.issued2026en_US
dc.identifier.issn2451-9049en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/156076-
dc.description.abstractThis study investigates the exergy-based performance and sustainability of a semi-industrial convective dryer equipped with a waste heat recovery unit for drying poplar wood chips. Four key exergy-related indicators, namely exergetic improvement potential (EIP), exergetic sustainability index (ESI), universal exergetic efficiency (UEE), and overall exergetic efficiency (OEE) were examined and then predicted using a feedforward backpropagation multilayer perceptron neural network (FFBP-MLPNN) with the Levenberg-Marquardt (LM) learning algorithm and a single hidden layer. The network evaluated different numbers of neurons in the hidden layer and utilized tansig and purelin activation functions in the hidden and output layers, respectively. Experimental trials demonstrated that increasing the air recirculation ratio enhances the ESI due to improved heat recovery and reduced exergy losses, while it reduces the EIP, indicating lower thermodynamic inefficiencies and less potential for further improvement. In contrast, lower recirculation ratios yielded lower ESI values and higher EIP, highlighting greater exergy destruction and larger optimization potential. Additionally, increased air temperatures and flow rates improved both indices. The results indicated that the neural network can predict all four outcomes with R2 > 0.97. Additionally, 0.013601 (using a 4–23–1 topology), 6.4137 × 10−6 (4–15–1 topology), 3.186 × 10−6 (4–30–1 topology), and 0.036108 (4–32–1 topology) were the mean squared error (MSE) values for predicting the EIP, ESI, UEE, and OEE, respectively. Hence, this study suggests that the ANNs approach could be an effective tool for analyzing thermal sustainability indicators in industrial convective drying processes.en_US
dc.languageengen_US
dc.relation.ispartofThermal Science and Engineering Progressen_US
dc.sourceThermal Science and Engineering Progress [EISSN 2451-9049],v. 70, (Enero 2026)en_US
dc.subject331005 Ingeniería de procesosen_US
dc.subject.otherArtificial Neural Networken_US
dc.subject.otherConvective Dryingen_US
dc.subject.otherExergetic Efficiencyen_US
dc.subject.otherExergy Analysisen_US
dc.subject.otherWaste Heat Recoveryen_US
dc.subject.otherWood Chipsen_US
dc.titleExergetic sustainability assessment of a semi-industrial convective dryer employing waste heat recovery for drying wood chips: A BPANN-based approachen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tsep.2026.104501en_US
dc.identifier.scopus105027207440-
dc.contributor.orcid0000-0003-4343-7379-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0009-0003-9663-0049-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-6269-1906-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-1746-6179-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57208335679-
dc.contributor.authorscopusid35794727100-
dc.contributor.authorscopusid56278533800-
dc.contributor.authorscopusid7003299250-
dc.contributor.authorscopusid54953383000-
dc.contributor.authorscopusid56371195400-
dc.contributor.authorscopusid25652860100-
dc.contributor.authorscopusid57215190233-
dc.contributor.authorscopusid7801546120-
dc.identifier.eissn2451-9049-
dc.relation.volume70en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2026en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Colección:Artículos
Adobe PDF (6,92 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.