Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/155460
Campo DC Valoridioma
dc.contributor.authorSchneider, Julietaen_US
dc.contributor.authorRiebesell ,Ulfen_US
dc.contributor.authorMoras, Charly Andreen_US
dc.contributor.authorMarín Samper, Lauraen_US
dc.contributor.authorKittu, Leila Richardsen_US
dc.contributor.authorOrtiz Cortés,Joaquinen_US
dc.contributor.authorSchulz, Kai Georgen_US
dc.date.accessioned2026-01-19T16:43:34Z-
dc.date.available2026-01-19T16:43:34Z-
dc.date.issued2026en_US
dc.identifier.issn1726-4170en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/155460-
dc.description.abstractOcean Alkalinity Enhancement (OAE) is a carbon dioxide removal strategy that aims to chemically sequester atmospheric CO2 in the ocean while potentially alleviating localized effects of ocean acidification. Depending on the implementation approach, OAE can considerably alter seawater carbonate chemistry, resulting in temporarily reduced CO2 partial pressure (pCO2) and elevated pH before re-equilibration with the atmosphere or mixing with unperturbed waters. To investigate the effects of OAE on biogeochemical processes and organisms under close-to-natural conditions, a large-scale mesocosm experiment was conducted in a temperate fjord ecosystem near Bergen, Norway, during late spring. A non-CO2-equilibrated OAE approach was chosen, simulating OAE with calcium- and silicate-based minerals. A gradient of five OAE levels was achieved by increasing total alkalinity (TA) by 0-600 mu molkg-1. The added TA remained relatively stable over the 47 d experiment and measured CO2 gas exchange rates reached up to -15 mmol C m-2 d-1. We estimated that full equilibration (95 %) by air-sea gas exchange for a Delta TA of 600 mu molkg-1 would take similar to 1050 d. Furthermore, various mineral-type and/or pCO2 / pH effects were found. Coccolithophore calcification followed an optimum curve response along the pCO2 gradient, consistent with findings from single-species laboratory cultures. In contrast, in-situ net community production (NCP) was higher in the silicate-based treatments, but was not modified by changes in pCO2. Zooplankton respiration, estimated from in-situ NCP and in-vitro NCP incubations, was lower for the silicate-based treatments and negatively correlated with pCO2. These complex findings suggest both direct and indirect effects of mineral type and OAE level and provide a valuable foundation for designing future OAE field trials. For a safe application of OAE, non-equilibrated alkalinity additions must balance efficiency and environmental impact.en_US
dc.languageengen_US
dc.relationOcean-based Negative Emission Technologies - analyzing the feasibility, risks, and cobenefits of ocean-based negative emission technologies for stabilizing the climateen_US
dc.relation.ispartofBiogeosciencesen_US
dc.sourceBiogeosciences [ISSN 1726-4170],v. 23 (1), p. 137-153, (Enero 2026)en_US
dc.subject251002 Oceanografía químicaen_US
dc.subject.otherConcentrating mechanismsen_US
dc.subject.otherMarine-phytoplanktonen_US
dc.subject.otherEmiliania-Huxleyien_US
dc.subject.otherCo2 concentrationen_US
dc.subject.otherPh measurementsen_US
dc.subject.otherNitrous-oxideen_US
dc.subject.otherWind-speeden_US
dc.subject.otherSeawateren_US
dc.subject.otherPrecipitationen_US
dc.subject.otherAcidificationen_US
dc.titleCarbon fixation of a temperate plankton community in response to calcium- and silicate-based Ocean Alkalinity Enhancement using air-sea gas exchange measurementsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.5194/bg-23-137-2026en_US
dc.identifier.isi001655929700001-
dc.identifier.eissn1726-4189-
dc.description.lastpage153en_US
dc.identifier.issue1-
dc.description.firstpage137en_US
dc.relation.volume23en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Schneider, J-
dc.contributor.wosstandardWOS:Riebesell, U-
dc.contributor.wosstandardWOS:Moras, C-
dc.contributor.wosstandardWOS:Marín-Samper, L-
dc.contributor.wosstandardWOS:Kittu, L-
dc.contributor.wosstandardWOS:Ortíz-Cortes, J-
dc.contributor.wosstandardWOS:Schulz, K-
dc.date.coverdateEnero 2026en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,767
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.project.fundingProgramConcedido-
crisitem.project.principalinvestigatorArístegui Ruiz, Javier-
crisitem.author.deptGIR IOCAG: Oceanografía Biológica y Algología Aplicada-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptGIR IOCAG: Oceanografía Biológica y Algología Aplicada-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.orcid0000-0002-6825-0992-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameRiebesell ,Ulf-
crisitem.author.fullNameMarín Samper, Laura-
crisitem.author.fullNameOrtiz Cortés,Joaquin-
Colección:Artículos
Adobe PDF (1,72 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.