Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/154930
DC FieldValueLanguage
dc.contributor.authorBorgianni, Lucaen_US
dc.contributor.authorOttella, Marcoen_US
dc.contributor.authorHeer, Rudolfen_US
dc.contributor.authorMontiel-Nelson, Juan A.en_US
dc.contributor.authorPau, Danilo Pietroen_US
dc.contributor.authorProietti, Riccardoen_US
dc.contributor.authorSchotter, Joergen_US
dc.contributor.authorTarvainen, Mikaen_US
dc.date.accessioned2026-01-13T10:47:00Z-
dc.date.available2026-01-13T10:47:00Z-
dc.date.issued2025en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/154930-
dc.description.abstractIn the contemporary landscape of healthcare and fitness, the integration of advanced technological solutions is imperative to address the challenges posed by an ageing society and the increasing demand for personalized, adaptable training programs. This paper delineates the development and potential of a made-in-Europe ecosystem for multisport training, healthy lifestyle, and remote patient monitoring, leveraging the innovative synergy of cloud-edge continuum and AI-enhanced body sensors. The research highlights the critical role of wearable sensors, smart textiles, and TinyML technologies in transforming the accessibility and effectiveness of fitness programs and patient care. Through the deployment of edge computing and SD-WAN, the paper illustrates the seamless integration of real-time data processing, ensuring low latency and high reliability in data transmission. The exploration of heart rate variability (HRV) and breath sensing as tools for personalized training and recovery optimization in endurance sports further exemplifies the application of this integrated approach. Additionally, the challenges and solutions for real-time in-water transmission underscore the potential in aquatic sports monitoring. The paper also presents the advancements in smart textiles, integrating hybrid printed electronics for enhanced user comfort and functionality. Furthermore, the utilization of TinyML and forward learning in human activity recognition demonstrates the capability for real-time, adaptive analytics in sports and healthcare. This comprehensive ecosystem not only promises to revolutionize multisport training and health monitoring but also aims to reduce healthcare costs and improve the quality of life, marking a significant stride towards a holistic, technologically advanced approach in promoting health and fitness across Europe.en_US
dc.languageengen_US
dc.relation.ispartof2025 Smart Systems Integration Conference And Exhibition, SSIen_US
dc.source2025 Smart Systems Integration Conference And Exhibition, SSI, (2025)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherHrven_US
dc.subject.otherWearable Sensorsen_US
dc.subject.otherHearth Rate Variabilityen_US
dc.subject.otherSmart-Textilesen_US
dc.subject.otherTinymlen_US
dc.subject.otherForward-Learningen_US
dc.subject.otherSd-Wanen_US
dc.subject.otherHealthcareen_US
dc.subject.otherFitnessen_US
dc.titleTowards a made-in-Europe ecosystem for multisport training, healthy lifestyle and remote patient monitoring based on cloud-edge continuum of AI-featured body sensorsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1109/SSI65953.2025.11107204en_US
dc.identifier.isi001567381100018-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages6en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Borgianni, L-
dc.contributor.wosstandardWOS:Ottella, M-
dc.contributor.wosstandardWOS:Heer, R-
dc.contributor.wosstandardWOS:Montiel-Nelson, J-
dc.contributor.wosstandardWOS:Pau, DP-
dc.contributor.wosstandardWOS:Proietti, R-
dc.contributor.wosstandardWOS:Schotter, J-
dc.contributor.wosstandardWOS:Tarvainen, M-
dc.date.coverdate2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0003-4323-8097-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameMontiel Nelson, Juan Antonio-
Appears in Collections:Actas de congresos
Adobe PDF (902,61 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.