Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/154913
Título: On the Implementation of Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation
Autores/as: Kolarik, Martin
Burget, Radim
Travieso-González, Carlos M. 
Kocica, Jan
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Multiple Sclerosis
Reproducibility
Segmentation
Transfer Learning
Fecha de publicación: 2021
Editor/a: Springer
Publicación seriada: Third International Workshop Reproducible Research In Pattern Recognition, Rrpr 2021
Resumen: This article describes detailed notes on the practical implementation of our paper Planar 3D transfer learning for end to end unimodal MRI unbalanced data segmentation (ICPR 2020, Milan), which deals with a problem of multiple sclerosis lesion segmentation from a unimodal MRI flair brain scan by applying a planar 3D transfer learning backbone weights to an autoencoder segmentation neural network. Our source code is published online under an open-source license, and we provide step-by-step instructions for the reproduction of our results.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154913
ISBN: 978-3-030-76423-4
DOI: 10.1007/978-3-030-76423-4_10
Fuente: Third International Workshop Reproducible Research In Pattern Recognition, RRPR 2021
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.