Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/154913
Title: On the Implementation of Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data Segmentation
Authors: Kolarik, Martin
Burget, Radim
Travieso-González, Carlos M. 
Kocica, Jan
UNESCO Clasification: 33 Ciencias tecnológicas
Keywords: Multiple Sclerosis
Reproducibility
Segmentation
Transfer Learning
Issue Date: 2021
Publisher: Springer
Journal: Third International Workshop Reproducible Research In Pattern Recognition, Rrpr 2021
Abstract: This article describes detailed notes on the practical implementation of our paper Planar 3D transfer learning for end to end unimodal MRI unbalanced data segmentation (ICPR 2020, Milan), which deals with a problem of multiple sclerosis lesion segmentation from a unimodal MRI flair brain scan by applying a planar 3D transfer learning backbone weights to an autoencoder segmentation neural network. Our source code is published online under an open-source license, and we provide step-by-step instructions for the reproduction of our results.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/154913
ISBN: 978-3-030-76423-4
DOI: 10.1007/978-3-030-76423-4_10
Source: Third International Workshop Reproducible Research In Pattern Recognition, RRPR 2021
Appears in Collections:Actas de congresos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.