Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/153794
Título: Heterogeneous elasticities in the P2P demand: An unconditional panel data quantile regression analysis
Autores/as: Pérez Rodríguez, Jorge Vicente 
Clasificación UNESCO: 530204 Estadística económica
531290 Economía sectorial: turismo
Palabras clave: Booked Days
Conditional And Unconditional Panel Data Quantile Regressions
High Dimensional Fixed Effects
P2P Accommodation Market
Fecha de publicación: 2025
Publicación seriada: Tourism Economics 
Resumen: This paper uses quantile regression modelling to provide a broad description of the relationship between tourism demand and its theoretical determinants across the peer-to-peer (P2P) demand distribution. Specifically, we use a panel data unconditional quantile regression with high-dimensional fixed effects to infer the effects of heterogeneous elasticity on unconditional demand. Our empirical analysis comprises a case study of the Canary Islands (Spain) using microeconomic information based on Airbnb listings. The results suggest that P2P demand behavior (measured by total booked days) is heterogeneous among quantiles. We show that the effects of low, medium, and high demand differ from each other with a 1% increase in average revenue, the average relative price of P2P competitors, and the average price of hotel competitors.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/153794
ISSN: 1354-8166
DOI: 10.1177/13548166251403111
Fuente: Tourism Economics[ISSN 1354-8166], (Enero 2025)
Colección:Artículos
Vista completa

Visitas

32
actualizado el 15-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.